首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
Markov Chain Monte Carlo (MCMC) algorithms play an important role in statistical inference problems dealing with intractable probability distributions. Recently, many MCMC algorithms such as Hamiltonian Monte Carlo (HMC) and Riemannian Manifold HMC have been proposed to provide distant proposals with high acceptance rate. These algorithms, however, tend to be computationally intensive which could limit their usefulness, especially for big data problems due to repetitive evaluations of functions and statistical quantities that depend on the data. This issue occurs in many statistic computing problems. In this paper, we propose a novel strategy that exploits smoothness (regularity) in parameter space to improve computational efficiency of MCMC algorithms. When evaluation of functions or statistical quantities are needed at a point in parameter space, interpolation from precomputed values or previous computed values is used. More specifically, we focus on HMC algorithms that use geometric information for faster exploration of probability distributions. Our proposed method is based on precomputing the required geometric information on a set of grids before running sampling algorithm and approximating the geometric information for the current location of the sampler using the precomputed information at nearby grids at each iteration of HMC. Sparse grid interpolation method is used for high dimensional problems. Tests on computational examples are shown to illustrate the advantages of our method.  相似文献   

2.
The Hybrid Monte Carlo (HMC) algorithm provides a framework for sampling from complex, high-dimensional target distributions. In contrast with standard Markov chain Monte Carlo (MCMC) algorithms, it generates nonlocal, nonsymmetric moves in the state space, alleviating random walk type behaviour for the simulated trajectories. However, similarly to algorithms based on random walk or Langevin proposals, the number of steps required to explore the target distribution typically grows with the dimension of the state space. We define a generalized HMC algorithm which overcomes this problem for target measures arising as finite-dimensional approximations of measures π which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert space. The key idea is to construct an MCMC method which is well defined on the Hilbert space itself.We successively address the following issues in the infinite-dimensional setting of a Hilbert space: (i) construction of a probability measure Π in an enlarged phase space having the target π as a marginal, together with a Hamiltonian flow that preserves Π; (ii) development of a suitable geometric numerical integrator for the Hamiltonian flow; and (iii) derivation of an accept/reject rule to ensure preservation of Π when using the above numerical integrator instead of the actual Hamiltonian flow. Experiments are reported that compare the new algorithm with standard HMC and with a version of the Langevin MCMC method defined on a Hilbert space.  相似文献   

3.
Implementations of the Monte Carlo EM Algorithm   总被引:1,自引:0,他引:1  
The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most exible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as the Gibbs and Metropolis–Hastings samplers. Although MCMC estimation presents a tractable solution to problems where the E-step is not available in closed form, two issues arise when implementing this MCEM routine: (1) how do we minimize the computational cost in obtaining an MCMC sample? and (2) how do we choose the Monte Carlo sample size? We address the first question through an application of importance sampling whereby samples drawn during previous EM iterations are recycled rather than running an MCMC sampler each MCEM iteration. The second question is addressed through an application of regenerative simulation. We obtain approximate independent and identical samples by subsampling the generated MCMC sample during different renewal periods. Standard central limit theorems may thus be used to gauge Monte Carlo error. In particular, we apply an automated rule for increasing the Monte Carlo sample size when the Monte Carlo error overwhelms the EM estimate at any given iteration. We illustrate our MCEM algorithm through analyses of two datasets fit by generalized linear mixed models. As a part of these applications, we demonstrate the improvement in computational cost and efficiency of our routine over alternative MCEM strategies.  相似文献   

4.
This paper is concerned with parameter estimation in linear and non-linear Itô type stochastic differential equations using Markov chain Monte Carlo (MCMC) methods. The MCMC methods studied in this paper are the Metropolis–Hastings and Hamiltonian Monte Carlo (HMC) algorithms. In these kind of models, the computation of the energy function gradient needed by HMC and gradient based optimization methods is non-trivial, and here we show how the gradient can be computed with a linear or non-linear Kalman filter-like recursion. We shall also show how in the linear case the differential equations in the gradient recursion equations can be solved using the matrix fraction decomposition. Numerical results for simulated examples are presented and discussed in detail.  相似文献   

5.
We develop an efficient computational algorithm that produces efficient Markov chain Monte Carlo (MCMC) transition matrices. The first level of efficiency is measured in terms of the number of operations needed to produce the resulting matrix. The second level of efficiency is evaluated in terms of the asymptotic variance of the resulting MCMC estimators. Results are first given for transition matrices in finite state spaces and then extended to transition kernels in more general settings.  相似文献   

6.
We focus on Bayesian variable selection in regression models. One challenge is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In this article, we propose a new computational approach based on sequential Monte Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through applications to linear regression and probit models.  相似文献   

7.
A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis–Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.  相似文献   

8.
A new computational strategy produces independent samples from the joint posterior distribution for a broad class of Bayesian spatial and spatiotemporal conditional autoregressive models. The method is based on reparameterization and marginalization of the posterior distribution and massive parallelization of rejection sampling using graphical processing units (GPUs) or other accelerators. It enables very fast sampling for small to moderate-sized datasets (up to approximately 10,000 observations) and feasible sampling for much larger datasets. Even using a mid-range GPU and a high-end CPU, the GPU-based implementation is up to 30 times faster than the same algorithm run serially on a single CPU, and the numbers of effective samples per second are orders of magnitude higher than those obtained with popular Markov chain Monte Carlo software. The method has been implemented in the R package CARrampsOcl. This work provides both a practical computing strategy for fitting a popular class of Bayesian models and a proof of concept that GPU acceleration can make independent sampling from Bayesian joint posterior densities feasible.  相似文献   

9.
This paper introduces a new and computationally efficient Markov chain Monte Carlo (MCMC) estimation algorithm for the Bayesian analysis of zero, one, and zero and one inflated beta regression models. The algorithm is computationally efficient in the sense that it has low MCMC autocorrelations and computational time. A simulation study shows that the proposed algorithm outperforms the slice sampling and random walk Metropolis–Hastings algorithms in both small and large sample settings. An empirical illustration on a loss given default banking model demonstrates the usefulness of the proposed algorithm.  相似文献   

10.
Importance sampling methods can be iterated like MCMC algorithms, while being more robust against dependence and starting values. The population Monte Carlo principle consists of iterated generations of importance samples, with importance functions depending on the previously generated importance samples. The advantage over MCMC algorithms is that the scheme is unbiased at any iteration and can thus be stopped at any time, while iterations improve the performances of the importance function, thus leading to an adaptive importance sampling. We illustrate this method on a mixture example with multiscale importance functions. A second example reanalyzes the ion channel model using an importance sampling scheme based on a hidden Markov representation, and compares population Monte Carlo with a corresponding MCMC algorithm.  相似文献   

11.
We investigate the class of σ-stable Poisson–Kingman random probability measures (RPMs) in the context of Bayesian nonparametric mixture modeling. This is a large class of discrete RPMs, which encompasses most of the popular discrete RPMs used in Bayesian nonparametrics, such as the Dirichlet process, Pitman–Yor process, the normalized inverse Gaussian process, and the normalized generalized Gamma process. We show how certain sampling properties and marginal characterizations of σ-stable Poisson–Kingman RPMs can be usefully exploited for devising a Markov chain Monte Carlo (MCMC) algorithm for performing posterior inference with a Bayesian nonparametric mixture model. Specifically, we introduce a novel and efficient MCMC sampling scheme in an augmented space that has a small number of auxiliary variables per iteration. We apply our sampling scheme to a density estimation and clustering tasks with unidimensional and multidimensional datasets, and compare it against competing MCMC sampling schemes. Supplementary materials for this article are available online.  相似文献   

12.
Hamiltonian Monte Carlo (HMC) has been progressively incorporated within the statistician’s toolbox as an alternative sampling method in settings when standard Metropolis–Hastings is inefficient. HMC generates a Markov chain on an augmented state space with transitions based on a deterministic differential flow derived from Hamiltonian mechanics. In practice, the evolution of Hamiltonian systems cannot be solved analytically, requiring numerical integration schemes. Under numerical integration, the resulting approximate solution no longer preserves the measure of the target distribution, therefore an accept–reject step is used to correct the bias. For doubly intractable distributions—such as posterior distributions based on Gibbs random fields—HMC suffers from some computational difficulties: computation of gradients in the differential flow and computation of the accept–reject proposals poses difficulty. In this article, we study the behavior of HMC when these quantities are replaced by Monte Carlo estimates. Supplemental codes for implementing methods used in the article are available online.  相似文献   

13.
Multicanonical MCMC (Multicanonical Markov Chain Monte Carlo; Multicanonical Monte Carlo) is discussed as a method of rare event sampling. Starting from a review of the generic framework of importance sampling, multicanonical MCMC is introduced, followed by applications in random matrices, random graphs, and chaotic dynamical systems. Replica exchange MCMC (also known as parallel tempering or Metropolis-coupled MCMC) is also explained as an alternative to multicanonical MCMC. In the last section, multicanonical MCMC is applied to data surrogation; a successful implementation in surrogating time series is shown. In the appendix, calculation of averages and normalizing constant in an exponential family, phase coexistence, simulated tempering, parallelization, and multivariate extensions are discussed.  相似文献   

14.
In the following article, we investigate a particle filter for approximating Feynman–Kac models with indicator potentials and we use this algorithm within Markov chain Monte Carlo (MCMC) to learn static parameters of the model. Examples of such models include approximate Bayesian computation (ABC) posteriors associated with hidden Markov models (HMMs) or rare-event problems. Such models require the use of advanced particle filter or MCMC algorithms to perform estimation. One of the drawbacks of existing particle filters is that they may “collapse,” in that the algorithm may terminate early, due to the indicator potentials. In this article, using a newly developed special case of the locally adaptive particle filter, we use an algorithm that can deal with this latter problem, while introducing a random cost per-time step. In particular, we show how this algorithm can be used within MCMC, using particle MCMC. It is established that, when not taking into account computational time, when the new MCMC algorithm is applied to a simplified model it has a lower asymptotic variance in comparison to a standard particle MCMC algorithm. Numerical examples are presented for ABC approximations of HMMs.  相似文献   

15.
Gaussian graphical models (GGMs) are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of GGMs extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous subgroups. In this article, we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable GGMs. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo (MCMC) algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the MCMC algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which MCMC algorithms are too slow to be practically useful.  相似文献   

16.
In dynamic linear models (DLMs) with unknown fixed parameters, a standard Markov chain Monte Carlo (MCMC) sampling strategy is to alternate sampling of latent states conditional on fixed parameters and sampling of fixed parameters conditional on latent states. In some regions of the parameter space, this standard data augmentation (DA) algorithm can be inefficient. To improve efficiency, we apply the interweaving strategies of Yu and Meng to DLMs. For this, we introduce three novel alternative DAs for DLMs: the scaled errors, wrongly scaled errors, and wrongly scaled disturbances. With the latent states and the less well known scaled disturbances, this yields five unique DAs to employ in MCMC algorithms. Each DA implies a unique MCMC sampling strategy and they can be combined into interweaving and alternating strategies that improve MCMC efficiency. We assess these strategies using the local level model and demonstrate that several strategies improve efficiency relative to the standard approach and the most efficient strategy interweaves the scaled errors and scaled disturbances. Supplementary materials are available online for this article.  相似文献   

17.
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm’s accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.  相似文献   

18.
In this paper, we propose an original approach to the solution of Fredholm equations of the second kind. We interpret the standard Von Neumann expansion of the solution as an expectation with respect to a probability distribution defined on a union of subspaces of variable dimension. Based on this representation, it is possible to use trans-dimensional Markov chain Monte Carlo (MCMC) methods such as Reversible Jump MCMC to approximate the solution numerically. This can be an attractive alternative to standard Sequential Importance Sampling (SIS) methods routinely used in this context. To motivate our approach, we sketch an application to value function estimation for a Markov decision process. Two computational examples are also provided.  相似文献   

19.
Sampling from complex distributions is an important but challenging topic in scientific and statistical computation. We synthesize three ideas, tempering, resampling, and Markov moving, and propose a general framework of resampling Markov chain Monte Carlo (MCMC). This framework not only accommodates various existing algorithms, including resample-move, importance resampling MCMC, and equi-energy sampling, but also leads to a generalized resample-move algorithm. We provide some basic analysis of these algorithms within the general framework, and present three simulation studies to compare these algorithms together with parallel tempering in the difficult situation where new modes emerge in the tails of previous tempering distributions. Our analysis and empirical results suggest that generalized resample-move tends to perform the best among all the algorithms studied when the Markov kernels lead to fast mixing or even locally so toward restricted distributions, whereas parallel tempering tends to perform the best when the Markov kernels lead to slow mixing, without even converging fast to restricted distributions. Moreover, importance resampling MCMC and equi-energy sampling perform similarly to each other, often worse than independence Metropolis resampling MCMC. Therefore, different algorithms seem to have advantages in different settings.  相似文献   

20.
Maximum likelihood estimation in random effects models for non-Gaussian data is a computationally challenging task that currently receives much attention. This article shows that the estimation process can be facilitated by the use of automatic differentiation, which is a technique for exact numerical differentiation of functions represented as computer programs. Automatic differentiation is applied to an approximation of the likelihood function, obtained by using either Laplace's method of integration or importance sampling. The approach is applied to generalized linear mixed models. The computational speed is high compared to the Monte Carlo EM algorithm and the Monte Carlo Newton–Raphson method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号