首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为了提高壳聚糖的多染料吸附性能并使其便于固液分离,采用共沉淀法制备了壳聚糖、磁铁矿纳米颗粒、氧化石墨烯复合磁性吸附剂(CS/Fe3O4/GO)。系统的结构表征显示,CS包覆的Fe3O4磁性纳米颗粒均匀地分布在GO的表面。CS/Fe3O4/GO具有高达42.5 emu·g-1的室温铁磁性,因此可在外加磁场中实现高效固液分离。研究表明,CS/Fe3O4/GO对亚甲基蓝(MB)、甲基橙(MO)和刚果红(CR)等多种染料具有良好的吸附性能,溶液的pH、初始浓度和吸附时间对其多染料吸附性能具有显著影响。在最佳条件下,CS/Fe3O4/GO对MB、MO和CR的吸附量分别达到210.6、258.6和308.9 mg·g-1。CS/Fe3O4/GO具有优异的循环利用性能,经5次循环后仍能保留90%以上的原始吸附量。采用吸附等温线和吸附动力学对...  相似文献   

2.
为了提高壳聚糖的多染料吸附性能并使其便于固液分离,采用共沉淀法制备了壳聚糖、磁铁矿纳米颗粒、氧化石墨烯复合磁性吸附剂(CS/Fe3O4/GO)。系统的结构表征显示,CS包覆的Fe3O4磁性纳米颗粒均匀地分布在GO的表面。CS/Fe3O4/GO具有高达42.5 emu·g-1的室温铁磁性,因此可在外加磁场中实现高效固液分离。研究表明,CS/Fe3O4/GO对亚甲基蓝(MB)、甲基橙(MO)和刚果红(CR)等多种染料具有良好的吸附性能,溶液的pH、初始浓度和吸附时间对其多染料吸附性能具有显著影响。在最佳条件下,CS/Fe3O4/GO对MB、MO和CR的吸附量分别达到210.6、258.6和308.9 mg·g-1。CS/Fe3O4/GO具有优异的循环利用性能,经5次循环后仍能保留90%以上的原始吸附量。采用吸附等温线和吸附动力学对CS/Fe3O4/GO的多染料吸附性能进行了拟合分析,并详细讨论了其吸附机理。  相似文献   

3.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

4.
This work describes a magnetic Fe3O4/graphene oxide (GO)-based solid-phase extraction (MSPE) technique for high performance liquid chromatography (HPLC) detection of malachite green (MG) and crystal violet (CV) in environmental water samples. Fe3O4/ GO magnetic nanoparticles were synthesised by a chemical co-precipitation method and characterised by scanning electron micrograph, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and surface area analyser. The prepared Fe3O4/GO magnetic nanoparticles were used as the adsorbents of MSPE for MG and CV. By coupling with HPLC, a sensitive and cost-effective method for simultaneous determination of MG and CV was developed. The important parameters including the amount of Fe3O4/GO, pH of the sample solution, extraction time, salt effect, the type and volume of desorption solvent were investigated in detail. Under optimised conditions, the calibration curves were linear in the concentration range of 0.5–200 μg L?1, and the limits of detection were 0.091 and 0.12 μg L?1 for MG and CV, respectively. Finally, the established MSPE-HPLC method was successfully applied to determine MG and CV in environmental water samples with the recoveries ranging from 91.5% to116.7%.  相似文献   

5.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF-8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF-8。在对Fe3O4@PAA@ZIF-8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示Fe3O4@PAA@ZIF-8具有明显的三层结构,Fe3O4的平均粒径为117nm,PAA层厚度约为17 nm,ZIF-8层的厚度约为14 nm。Fe3O4@PAA@ZIF-8对MG的吸附量随着p H的升高而增大,吸附过程符合准二阶动力学模型和Langmuir等温吸附模...  相似文献   

6.
在利用静电喷射一步法获得壳聚糖(CS)磁性微球(Fe3O4/CS)的基础上,对Fe3O4/CS进行高温炭化和碱活化处理获得活性磁性多孔炭球(A-Fe3O4/C),并对A-Fe3O4/C吸附水中亚甲基蓝(MB)分子的性能进行了研究。在利用扫描电子显微镜、红外吸收光谱仪、比表面分析仪对制备微球的形貌和结构进行分析的基础上,深入研究溶液pH、吸附时间、温度以及活化剂种类等因素对A-Fe3O4/C吸附性能的影响。研究结果表明,A-Fe3O4/C对MB的吸附量随着pH值的增加而增大,且经KOH活化后的A-Fe3O4/C对MB表现出较优的吸附性能。A-Fe3O4/C对MB的吸附过程符合伪二级动力学方程和Langmuir等温线模型,理论最大吸附容量可达300.6 mg·g-1。此外,A-Fe3O4/C表现出良好的重复利用性能,6次循环后对MB的去除率没有明显下降。  相似文献   

7.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF 8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF 8。在对Fe3O4@PAA@ZIF 8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示 Fe3O4@PAA@ZIF 8 具有明显的三层结构,Fe3O4的平均粒径为 117nm,PAA 层厚度约为 17 nm,ZIF 8层的厚度约为 14 nm。Fe3O4@PAA@ZIF 8对 MG 的吸附量随着 pH 的升高而增大,吸附过程符合准二阶动力学模型和 Langmuir等温吸附模型。此外,Fe3O4@PAA@ZIF 8还表现出良好的重复利用性能,8次循环利用后对MG(500 mg·L-1)的最大吸附量仍可达982 mg·g-1。  相似文献   

8.

Organic dyes are used in many industries, e.g., textile, cosmetics and food. Hence, contamination of organic dyes to water sources is a critical issue. To reduce water pollution by organic dyes, we propose a paper-like adsorbent with a practical and economical production procedure. Subsequently, a flexible adsorbent was produced using a one-step approach by vacuum filtration of graphene oxide (GO) and iron oxide nanoparticles (Fe3O4-NPs) containing dispersion through a membrane and quoted as GO/Fe3O4 paper. For comparison, GO paper was also prepared using the same procedure. Both papers were characterized using UV–VIS absorption spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, electron diffraction X-ray analysis, X-ray photoelectron spectroscopy, and powder X-ray diffraction techniques. At the steady-state conditions, GO/Fe3O4 and GO papers were performed as adsorbent for cationic dyes of methylene blue, neutral red, and anionic dyes of methyl orange and fluorescein. In general, the removal efficiency of GO/Fe3O4 paper was higher than that of GO paper for adsorption of all dyes and this adsorbent revealed satisfactory adsorption properties for cationic dyes when compared to anionic dyes.

  相似文献   

9.
在利用静电喷射一步法获得壳聚糖(CS)磁性微球(Fe3O4/CS)的基础上,对Fe3O4/CS进行高温炭化和碱活化处理获得活性磁性多孔炭球(A-Fe3O4/C),并对A-Fe3O4/C吸附水中亚甲基蓝(MB)分子的性能进行了研究。在利用扫描电子显微镜、红外吸收光谱仪、比表面分析仪对制备微球的形貌和结构进行分析的基础上,深入研究溶液pH、吸附时间、温度以及活化剂种类等因素对A-Fe3O4/C吸附性能的影响。研究结果表明,A-Fe3O4/C对MB的吸附量随着pH值的增加而增大,且经KOH活化后的A-Fe3O4/C对MB表现出较优的吸附性能。A-Fe3O4/C对MB的吸附过程符合伪二级动力学方程和Langmuir等温线模型,理论最大吸附容量可达300.6 mg·g-1。此外,A-Fe3O4/C表现出良好的重复利用性能,6次循环后对MB的去除率没有明显下降。  相似文献   

10.
The present study was conducted to evaluate the performance of magnetic Fe3O4 nanoparticles coated with polythiophene (PT), Mil-101 (Cr) (MOF), graphene oxide (GO), SiO2, and chitosan for adsorption of asphaltene from crude oil in a bench scale setup. All nanoparticles were synthesized using co-precipitation method. The characteristics of nanoparticles were verified using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field emission scanning electron microscope (FESEM) analyses. The concentration of nanoparticles was kept constant at the optimum value of 10g?L?1. The amount of asphaltene adsorption was determined at different contact times of 0.5, 0.75, 1, 2, and 4 hours. The results showed that the adsorption increased with contact time and reached equilibrium after about 2 hours in both continuous and batch experiments. The amount of asphaltene adsorption was lower in continuous experiments compared to batch experiments. However, it was found that magnetic nanoparticles are applicable for inhibition of asphaltene precipitation under flow conditions. Furthermore, polythiophene coating on magnetic Fe3O4 nanoparticles had the highest capacity for asphaltene adsorption. Besides, by applying a magnetic field, the magnetic nanoparticles that adsorbed asphaltene can be separated from crude oil to prevent asphaltene aggregation and precipitation.  相似文献   

11.
In this study, the potential of MOF (Mil-101-Cr)-coated Fe3O4 magnetic nanoparticles (Fe3O4-MOF MNPs) for asphaltene adsorption was investigated for the first time and the results were compared with magnetic Fe3O4 nanoparticles (Fe3O4 MNPs). The coprecipitation method was used for the synthesis of both nanoparticles and were verified using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The initial asphaltene concentration, nanoparticles concentration, and temperature were the investigated parameters that influenced the adsorption capacity. Increasing the asphaltene concentration, decreasing the mass of nanoparticles, and reducing the temperature could enhance the maximum asphaltene adsorption capacities of 0.79 for Fe3O4 MNPs and 0.98?mg?m?2 for Fe3O4-MOF MNPs. Adsorption isotherms tests showed that the Langmuir model was in agreement with the experimental data. In addition, the evaluation of adsorption kinetics demonstrated that the pseudo-second-order Lagergren model predicted the results more precisely. The amount of asphaltene adsorption for Fe3O4-MOF MNPs was higher than that for Fe3O4 MNPs. These results recommend the application of MOF as an appropriate and effective coating for enhancing asphaltene adsorption.  相似文献   

12.
Amino group-functionalized Fe3O4 is loaded on a coordination complex-modified polyoxometalate nanoparticle. In this composite material, Fe3O4 and coordination complex-modified polyoxometalate are connected with intense hydrogen bonds as suggested by FTIR. This composite material exhibits excellent methylene blue (MB) adsorption, with adsorption capacity of 175.5 mg g?1. It also possesses selective separation ability between cationic and anionic dye molecules. In binary solution of MB and methyl orange (MO), MB adsorption efficiency reaches 75%, but it exhibits almost no effect on the adsorption of methyl orange. The saturation magnetization value of this composite material is 18.89 emu g?1, allowing magnetic separation, which facilitates the recycle and reuse of this composite adsorbent.  相似文献   

13.
The objective of the present study was to investigate the potential use of applying polythiophene coating on magnetic Fe3O4 nanoparticles for the enhancement of asphaltene adsorption. Two stages of experimental were conducted. In the first stage, the ability of coated nanoparticles for asphaltene adsorption in synthetic asphaltene-toluene solution was evaluated. The effects of parameters such as nanoparticles concentration, initial concentration of asphaltene, and temperature were studied. In the second stage, the performance of the coated nanoparticles for the adsorption of asphaltene from crude oil was investigated under atmospheric pressure and a pressure-volume-temperature (PVT) apparatus was utilized for simulated reservoir conditions. Fe3O4 and Fe3O4-PT MNPs were synthesized using an effective co-precipitation method. The results of the first-stage tests indicated that the maximum adsorption capacity values for Fe3O4 and Fe3O4-PT MNPs were 0.79 and 1.09?mg?m?2, respectively. The optimum value of nanoparticles concentration was approximately determined as 10?g?L?1. According to the adsorption isotherms and kinetics, the Langmuir and pseudo-second-order Lagergren models were consistent with the experimental data, respectively. The average adsorption efficiencies for Fe3O4-PT and Fe3O4 MNPs were 78.98 and 65.94%, respectively. The results of the performed experiments on crude oil showed that Fe3O4-PT MNPs could adsorb asphaltenes from crude oil in a similar trend as synthetic asphaltene-toluene solution.  相似文献   

14.
用改进的Hummers法制备了氧化石墨烯,用乙二胺、乙二胺与丁二胺/己二胺混溶来改性氧化石墨烯。用水热法制备了Fe3O4,并用物理混合法制备了GO/Fe3O4/有机胺的三元复合体系。用透射电镜、扫描电镜、红外光谱、热重分析、X射线衍射、VSM和XPS等对所制得的样品进行了结构表征和性能测试,研究了三元复合粒子对结晶紫染料的吸附性能及影响结晶紫染料吸附效果的因素。结果表明:所制备的Fe3O4的平均粒径约为200 nm,粒径分布均匀;复合物中GO为典型的片状结构,GO及有机胺的掺杂没有影响Fe3O4的尖晶石结构;复合物为超顺磁性,Ms为53.0 emu·g~(-1)。吸附结果表明:石墨烯/Fe3O4/有机胺的三元复合材料对结晶紫染料的最大吸附量随浓度增大而增大,而吸附结晶紫染料的移除率却随结晶紫染料浓度增大而减小,并趋向一定值;乙二胺和己二胺混溶比例为5∶1的GO/Fe3O4复合材料吸附性能最佳:结晶紫浓度为400 mg·L~(-1),最大吸附量为164.3 mg·L~(-1)。  相似文献   

15.
合成了以Fe3O4为核,以SiO2为壳的磁性纳米微粒(Fe3O4@SiO2),并采用沉淀沉积法将ZrO2包覆到材料表面。通过XRD、TEM、XPS和N2吸附/脱附等手段对材料进行表征,结果表明材料Fe3O4@SiO2@ZrO2上沉积了氧化锆纳米颗粒,具有超顺磁性,可在外加磁场作用下实现从水中快速分离。同时系统研究了材料对水中磷酸盐的吸附行为,结果表明沉积ZrO2使得材料对磷酸盐表现出良好的吸附性能,并且随着沉积量的增大吸附量增加。吸附等温线可用Freundlich方程拟合。吸附动力学可用拟二级动力学模型拟合,吸附速率随初始浓度增加而减缓。磷酸盐吸附量随溶液pH值的增大而减小,但几乎不受离子强度影响。  相似文献   

16.
柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响   总被引:19,自引:0,他引:19  
现代诊断学的发展使得超小超顺磁性的Fe3O4粒子在医学领域具有重要应用价值。实验中利用某些羧酸盐对铁氧化物晶粒成长的抑制作用,在共沉淀法中引入柠檬酸根,制备出平均粒径小于5 nm的Fe3O4纳米分散体系。研究了不同柠檬酸根浓度对生成粒子的大小、结晶和表面吸附情况的影响。对Fe3O4颗粒在不同条件下的磁性与胶体稳定性进行了讨论。  相似文献   

17.
In the present study, we successfully prepared two different electrospun polyacrylonitrile (PAN) based-activated carbon nanofiber (ACNF) composites by incorporation of well-distributed Fe2O3 and Co3O4 nanoparticles (NPs). The influence of metal oxide on the structural, morphological, and textural properties of final composites was thoroughly investigated. The results showed that the morphological and textural properties could be easily tuned by changing the metal oxide NPs. Even though, the ACNF composites were not chemically activated by any activation agent, they presented relatively high surface areas (SBET) calculated by Brunauer–Emmett–Teller (BET) equation as 212.21 and 185.12 m2/g for ACNF/Fe2O3 and ACNF/Co3O4 composites, respectively. Furthermore, the ACNF composites were utilized as candidate adsorbents for CO2 and CH4 adsorption. The ACNF/Fe2O3 and ACNF/Co3O4 composites resulted the highest CO2 adsorption capacities of 1.502 and 2.166 mmol/g at 0 °C, respectively, whereas the highest CH4 adsorption capacities were obtained to be 0.516 and 0.661 mmol/g at 0 °C by ACNF/Fe2O3 and ACNF/Co3O4 composites, respectively. The isosteric heats calculated lower than 80 kJ/mol showed that the adsorption processes of CO2 and CH4 were mainly dominated by physical adsorption for both ACNF composites. Our findings indicated that ACNF-metal oxide composites are useful materials for designing of CO2 and CH4 adsorption systems.  相似文献   

18.
In this study, we report a simple and economic one-pot synthesis of magnetite (Fe3O4) nanostructure and its modification with tetraethyl orthosilicate by coprecipitation method. The synthesized (Fe3O4@SiO2) nano sorbent was applied for enhanced adsorptive removal of methylene blue by ultrasonic wave driven batch experiments. After successful synthesis, the nanostructure was characterized for their physical structure by FT-IR, VSM, TEM, and XRD. For the maximum adsorptive performance of nano sorbent, various parameters were optimized, such as dose, pH, time, concentration, and temperature. The adsorption mechanism was best fitted by Langmuir isotherm with a maximum capacity of 148.69 mg/g, while kinetics best fitted by pseudo-second-order kinetic. The synthesized nano sorbent was successfully applied for enhanced adsorptive removal of toxic methylene blue from aqueous media. The proposed method is promising and effective in terms of simplicity, cost operation, green energy consumption, reproducible, excellent reusability, and magnetically separability with fast kinetic.  相似文献   

19.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

20.
The superparamagnetic multilayer hybrid hollow microspheres have been fabricated using the layer‐by‐layer assembly technique by the electrostatic interaction between the polyelectrolyte cation chitosan (CS) and the hybrid anion citrate modified ferroferric oxide nanoparticles (Fe3O4‐CA) onto the sacrificial polystyrene sulfonate microspheres templates after etching the templates by dialysis. The saturation magnetization and magnetite contents of the superparamagnetic multilayer hybrid hollow microspheres were 32.46 emu/g and 51.3%, respectively. The hybrid hollow microspheres showed pH‐sensitive characteristics. The adsorption and release of the basic dye (methylene blue) were applied to investigate the interaction between the amino groups of CS and the carboxyl groups of the Fe3O4‐CA nanoparticles in different pH media. The superparamagnetic pH‐sensitive multilayer hybrid hollow microspheres are expected to be used for the targeted controlled release of drugs or in diagnostics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3135–3144, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号