首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two new cytochalasans flavichalasine N (1), flavichalasine O (2), together with six known cytochalasans (38), were isolated from Aspergillus flavipes PJ03-11 through the application of OSMAC (one strain many compounds) strategy. Flavichalasine O (2) represented the first example of cytochalasans possessing a nitrogen-oxygen heterocycle at the macrocyclic ring part. Their structures were established on the base of extensive spectroscopic analysis. Compounds 14 exhibited significant cytotoxic activities against three human cancer cell lines (THP1, HL-60 and PC3) with IC50 values ranging from 3.00 to 15.10?μM.  相似文献   

2.
The fatty-acid composition of seven strains of aquatic actinobacteria of the genus Streptomyces was studied. GC and GC–MS showed that the microorganisms produced mixtures of saturated, unsaturated, and branched fatty acids. A producer of dehydroabietic acid was found.  相似文献   

3.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Isatropolones/isarubrolones are actinomycete secondary metabolites featuring a tropolone-ring in their structures. From the isatropolone/isarubrolone producer Streptomyces sp. CPCC 204095, 7,12-dihydroisatropolone C (H2ITC) is discovered and identified as a mixture of two interchangeable diastereomers differing in the C-6 configuration. As a major metabolite in the mycelial growth period of Streptomyces sp. CPCC 204095, H2ITC can be oxidized spontaneously to isatropolone C (ITC), suggesting H2ITC is the physiological precursor of ITC. Characterization of H2ITC makes us propose dihydrotropolone-ring construction in the biosynthesis of isatropolones.  相似文献   

5.
Two new polyketide phosphate monoesters, phosdiecin A ( 1 ) and phosdiecin B ( 2 ), were isolated from a culture of the marine Streptomyces sp. SS99BA‐2 using the hyphenated technology LC–SPE/NMR. The compounds showed to be new representatives of an important class of antitumor antibiotic metabolites known as fostriecins. Their structures, including relative configuration attribution, were fully elucidated through extensive analyses of NMR and MALDI‐TOF/TOF HR‐MS data. Herein, the application of this system to isolate and identify the new compounds is described.  相似文献   

6.
Two new phenylpentadienamides isolated from the culture filtrate of Streptomyces sp. were assigned the structures 5-(4-aminophenyl)penta-2,4-dienamide ( 2 ) and N2-[5-(4-aminophenyl)penta-2,4-dienoyl]-L -glutamine ( 3 ). In addition, 5-(4-aminophenyl)penta-2,4-dienoic acid ( 1 ) has been isolated, and its spectroscopic characteristics are reported for the first time. Compounds 1–3 exist in both the (2E,4E)- and (2E,4Z)-configurations. Electrospray and tandem MS, and HPLC/MS proved to be particularly suitable for the characterization of these metabolites.  相似文献   

7.
Two isoflavone 7-O-α-4″-anhydro-4″,5″-didehydroglucuronides, namely daidzein 7-O-α-4″-anhydro-4″,5″-didehydroglucuronide (1) and genistein 7-O-α-4″-anhydro-4″,5″-didehydroglucuronide (2), were isolated and identified from the mutant strain of Streptomyces sp. LZ35ΔgdmAI. Their structures were elucidated by the analysis of their high resolution mass spectrometry (HR–MS) and 1D, 2D Nuclear magnetic Resonance (NMR) spectroscopic data. They are new natural products and maybe the transformed products of the soybean meal by Streptomyces sp. LZ35ΔgdmAI.  相似文献   

8.
Cihunamides A–D ( 1 – 4 ), novel antibacterial RiPPs, were isolated from volcanic-island-derived Streptomyces sp. The structures of 1 – 4 were elucidated by 1H, 13C, and 15N NMR, MS, and chemical derivatization; they contain a tetrapeptide core composed of WNIW, cyclized by a unique C−N linkage between two Trp units. Genome mining of the producer strain revealed two biosynthetic genes encoding a cytochrome P450 enzyme and a precursor peptide. Heterologous co-expression of the core genes demonstrated the biosynthesis of cihunamides through P450-mediated oxidative Trp-Trp cross-linking. Further bioinformatic analysis uncovered 252 homologous gene clusters, including that of tryptorubins, which possess a distinct Trp-Trp linkage. Cihunamides do not display the non-canonical atropisomerism shown in tryptorubins, which are the founding members of the “atropitide” family. Therefore, we propose to use a new RiPP family name, “bitryptides”, for cihunamides, tryptorubins, and their congeners, wherein the Trp-Trp linkages define the structural class rather than non-canonical atropisomerism.  相似文献   

9.
A collaborative program to discover new specialized metabolites from aquatic environments of Iceland led to the deconvolution of tetrahydroisoquinoline amide E/Z rotamers [(E/Z)-N-acetyl-MY336-a; 1] and conformers produced by a Streptomyces sp. All structures were elucidated by NMR and MS analysis, and interpretation of electronic circular dichroism (ECD) data. ECD and optical rotation (OR) simulations permitted the unequivocal assignment of the absolute configuration of compound 1 and provided an important example of delineating the spectroscopic contributions of equilibrating rotamers and boat/chair conformers of a common natural product scaffold.  相似文献   

10.
Further chemical study of secondary metabolites from the soil actinomycete Streptomyces sp. WS-13394 resulted in the isolation of four new alkylated anthraquinone analogues (58). Their structures were elucidated on the basis of extensive spectroscopic analysis, including HR-ESI-MS, 1D and 2D NMR. The new compounds, together with analogues obtained before (14), were tested for their in vitro cytotoxicity against Huh-7 and SGC-7901.  相似文献   

11.
During our search for Streptomyces spp. as new producers of bioactive secondary metabolites, the ethyl acetate extract of the new terrestrial Streptomyces isolate TN262 delivered eight antimicrobially active compounds. They were identified as 1-acetyl-β-carboline (1), tryptophol (2), cineromycin B (3), 2,3-dihydrocineromycin B (4), cyclo-(tyrosylprolyl) (5), 3-(hydroxyacetyl)-indole (6), brevianamide F (7), and cis-cyclo-(l-prolyl-l-leucyl) (8). Three further metabolites were detected in the unpolar fractions using GC–MS and tentatively assigned as benzophenone (9), N-butyl-benzenesulfonamide (10), and hexanedioic acid-bis-(2-ethylhexyl) ester (11). This last compound is known as plasticizer derivatives, but it has never been described from natural sources. In this article, we describe the identification of the new Streptomyces sp. isolate TN262 using its cultural characteristics, the nucleotide sequence of the corresponding 16S rRNA gene and the phylogenetic analysis, followed by optimization, large-scale fermentation, isolation of the bioactive constituents, and determination of their structures. The biological activity of compounds (2), (3), (4), and those of the unpolar fractions was addressed as well.  相似文献   

12.
《Analytical letters》2012,45(3):429-438
Baicalin, mainly isolated from Scutllaria baicalensis, has been reported to possess a wide range of biological activities. However, the information about the metabolic route and metabolites of baicalin was limited to the role of the human intestinal bacterial mixture. In this paper, four strains of bacteria including Bacteroides sp. 33 and 56, and Veillonella sp. 23 and 71 were isolated from human intestinal bacterial mixture and studied for their abilities to convert baicalin to different metabolites. A highly sensitive and specific ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method combined with mass defect filtering (MDF) provides high throughput capabilities for drug metabolism study. The chromatographic separation was performed on a 1.7 µm particle size C 18 column using gradient elution system. The components in the extract were identified and confirmed according to the mass spectrometric fragmentation mechanisms, MS/MS fragment ions and relevant literature by means of electrospray ionization mass spectrometry in negative ion mode. With this method, a total of 4 metabolites were identified based on MS and MS/MS data. The results indicated that hydrogenation, methylation, and deglycosylation were the major metabolic pathways of baicalin in vitro. The present study provides important information about the metabolism of baicalin which will be helpful for fully understanding the impact of the intestinal bacteria on this active component. Furthermore, this work demonstrated the potential of the ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry approach for a rapid, simple, reliable, and automated identification of metabolites of natural products.  相似文献   

13.
From the endophytic strain Streptomyces sp. CS of Maytenus hookeri, five novel type III polyketides, compounds 1 – 5 , were isolated. Their structures were elucidated by spectroscopic analyses including 1D‐ and 2D‐NMR experiments, and by HR‐ESI‐MS.  相似文献   

14.
We isolated Streptomyces sp. K15 from the root tissue of Houttuynia cordata Thunb and found that some of its secondary metabolites exhibited significant antimicrobial activity against Botrytis cinerea. Moreover, we separated, purified and identified the major active ingredient to be 2-pyrrol formic acid by using silica gel column chromatography, high-performance liquid chromatography and NMR analysis of the spectral data. 2-Pyrrol formic acid critically inhibited the growth of some phytopathogenic bacteria. Therefore, it has potential value in agricultural applications.  相似文献   

15.
The bacteria of the genus Curtobacterium are usually seen as plant pathogen, but some species have been identified as endophytes of different crops and could as such present a potential for disease control and plant growth promotion. We have therefore applied the desorption electrospray ionization mass spectrometry imaging (DESI‐MSI) in the direct analysis of living Curtobacterium sp. strain ER1/6 colonies to map the surface metabolites, and electrospray ionization tandem mass spectrometry (ESI‐MS/MS) for characterization of these compounds. Several colony‐associated metabolites were detected. The ESI‐MS/MS showed characteristic fragmentations for phospholipids including the classes of glycerophosphocholine, glycerophosphoglycerol, and glycerophosphoinositol as well as several fatty acids. Although a secure identification was not obtained, many other metabolites were also detected for this bacteria species. Principal component analysis showed that fatty acids were discriminatory for Curtobacterium sp. ER1/6 during inoculation on periwinkle wilt (PW) medium, whereas phospholipids characterize the bacterium when grown on the tryptic soy agar (TSA) medium.  相似文献   

16.
17.
In this paper, ultraperformance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) and the MetaboLynx? software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The diversity of microbial metabolites has been of interest and concern for a long time, yet a suitable method for discovering these is still unavailable. In the work discussed in this report, ultra-performance liquid chromatography coupled with tandem quadrupole and time of flight high-resolution mass spectrometry (UPLC–Q–TOF-HRMS), with MS data analysis, was set up to study the metabolites of Streptomyces strain HCCB10043. It was found that besides antibacterial substances (A21978C complex) and two anti-aminopeptidase compounds (valistatin and bestatin), this strain can produce a new aminopeptidase inhibitor, identified as 3-amino-2-hydroxy-4-phenylbutanoylvalylisoleucine. This new compound had greater activity than valistatin or bestatin in aminopeptidase N (APN) inhibition assay. The results proved that combination of UPLC–Q–TOF-MS analysis and classic purification and identification steps as complementary strategies can provide a method with high reliability for research on microbial secondary metabolites. Furthermore, it has shown that the study of secondary metabolic profiling might be the key to discovering new drugs.  相似文献   

19.
Two new pyrrolosesquiterpenes were isolated from cultures of the soil actinomycete Streptomyces sp. Hd7‐21. The structures of these compounds were elucidated by extensive spectroscopic analyses including MS and 1D and 2D NMR data. Their cytotoxic activity against a panel of human cancer cell lines were biologically evaluated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Two bioactive merocytochalasans, epicochalasines A ( 1 ) and B ( 2 ), a new class of cytochalasans bearing unexpected scaffolds consisting of fused aspochalasin and epicoccine dimer moieties, were isolated from the liquid culture broth of Aspergillus flavipes. Both 1 and 2 possess a hendecacyclic 5/6/11/5/6/5/6/5/6/6/5 ring system containing an adamantyl cage and as many as 19 stereogenic centers; however, the fusion patterns of 1 and 2 differ greatly, thus resulting in different carbon skeletons. The absolute configurations of 1 and 2 were determined by X‐ray diffraction and calculated ECD, respectively. The biogenetic pathways of 1 and 2 are proposed to involve Diels–Alder and nucleophilic addition reactions. Both 1 and 2 induced significant G2/M‐phase cell‐cycle arrest. Furthermore, we found that merocytochalasans induce apoptosis in leukemia cells through the activation of caspase‐3 and the degradation of PARP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号