首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new flavonoid, dhasingreoside (1) and seven known compounds, quercetin 3-O-β-d-galacturonopyranoside (2), quercetin 3-O-β-d-galactopyranoside (3), quercetin 3-O-β-d-glucuronopyranoside (4), quercetin 3-O-α-l-rhamnopyranoside (5), (–)-epicatechin (6), salicylic acid (7) and gaultherin (8), have been isolated from the shade-dried stems and leaves of Gaultheria fragrantissima, commonly known as ‘Dhasingre’ in Nepal. The structures were elucidated on the basis of physical, chemical and spectroscopic methods. Among known compounds, five compounds (36 and 8) were isolated for the first time from G. fragrantissima. In vitro antioxidant activity of all the isolated compounds was evaluated by 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging assay. Dhasingreoside (1) and other compounds (26) showed significant free radical-scavenging activity.  相似文献   

2.
New oxamides, derivatives of D-glucosamine and aliphatic or aromatic amines were prepared by acylation of methyl 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-α- or -β-D-glucopyranoside (1c or 1d) with oxalyl chloride, followed by reaction with amine. The reaction was assumed to proceed by the intermediate of N-carbomethoxy N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α or β-D-glucopyranosid-2-yl) oxamic acid chloride which reacted with amines, and afforded N-acetyl, N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α- or -β-D-glucopyranosid-2-yl), N′-alkyl or aryloxamide (5–7), and N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α- or -β-D-glucopyranosid-2-yl), N′-alkyl or aryloxamide (8–13).  相似文献   

3.
From the extracts of Dimocarpus longan Lour leaves, 2 unusual flavonol glycosides, quercetin 3-O-(3″-O-2?-methyl-2?-hydroxylethyl)-β-d-xyloside (1) and quercetin 3-O-(3″-O-2?-methyl-2?-hydroxylethyl)-α-l-rhamnopyranoside (2), as well as 10 known compounds including 2 flavonol glycosides, afzelin (3) and kaempferol-3-O-α-l-rhamnopyranoside (4), 2 flavans, ( ? )-epicatechin (5) and proanthocyanidin A-2 (6), 3 triterpenoids, friedelin (7), epifriedelanol (8) and β-amyrin (9), a peptide, N-benzoylphenylalanyl-N-benzoylphenylalaninate (10), and 2 sterols, β-sitosterol (11) and daucosterol (12) were isolated and identified by using combination of mass spectrometry and various 1D and 2D NMR techniques. This is the first report of flavonoid glycosides possessing a 2-methyl-2-hydroxylethoxyl group in sugar moiety from D. longan.  相似文献   

4.
Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-β-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-β-d-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with α or β-l-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data.  相似文献   

5.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

6.
A variety of sialyl-α-(2→3)-neolactotetraose (IV3NeuAcnLcOse4 or IV3NeuGcnLcOse4) derivatives (23, 31–37, 58–60) modified at C-2 of the GlcNAc residue have been synthesized. The phthalimido group at C-2 of GlcNAc in 2-(trimethylsilyl)ethyl (3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (5) was systematically converted to a series of acylamino groups, to give the per-O-benzylated trisaccharide acceptors (6–11). On the other hand, modification of the hydroxyl group at C-2 of the terminal Glc residue in 2-(trimethylsilyl)ethyl (4,6-O-benzylidene-β-d-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (42) gave three different kinds of trisaccharide acceptors containing D-glucose (49), N-acetyl-d-mannosamine (50), and D-mannose (51) instead of the GlcNAc residue. Totally ten trisaccharide acceptors (5–11 and 49–51) were each coupled with sialyl-α-(2→3)-galactose donor 12 to afford the corresponding pentasaccharides (14–21 and 52–54) in good yields, respectively, which were then transformed into the target compounds. Acceptor specificity of the synthetic sialyl-α-(2→3)-neolactotetraose probes for the human α-(1→3)-fucosyltransferases, Fuc-TVII and Fuc-TVI, was examined.  相似文献   

7.
Abstract

α-Stereocontrolled, glycoside synthesis of trimeric sialic acid is described toward a systematic approach to the synthesis of sialoglycoconjugates containing an α-sialyl-(2→8)-α-sialyl-(2→8)-sialic acid unit α-glycosidically linked to O-3 of a galactose residue in their oligosaccharide chains. Glycosylation of 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-d-galactopyranoside (4) or 2-(trimethylsilyl)ethyl 2,3,6,2′,6′-penta-O-benzyl-β-lactoside (5), with methyl [phenyl 5-acetamido-8-O-[5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1”, 9′-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′, 9-lactone]-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (3), using N-iodosuccinimide-trifluoromethanesulfonic acid as a promoter, gave the corresponding α-glycosides 6 and 8, respectively. The glycosyl donor 3 was prepared from trimeric sialic acid by treatment with Amberlite IR-120 (H+) resin in methanol, O-acetylation, and subsequent replacement of the anomeric acetoxy group with phenylthio. Compounds 6 and 8 were converted into the per-O-acyl derivatives 7 and 9, respectively.  相似文献   

8.
A pentasaccharide, the major repeating unit of the lipopolysaccharide (LPS) of the nitrogen fixing bacterium Acetobacter diazotrophicus PAL 5 was efficiently synthesized as its allyl glycoside using a regio- and stereo-selective strategy. The key acceptor, allyl 3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranoside (3), was prepared by selective 3-O-acetylation of allyl 4-O-benzoyl-α-l-rhamnopyranoside. Condensation of 3 with 2,3,4,6-tetra-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate furnished the disaccharide 5. Deallylation and subsequent trichloroacetimidation of 5 afforded 2,3,4,6-tetra-O-benzoyl-β-d-glucopyranosyl-(1→2)-3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (10). Selective 3-O-glycosylation of allyl α-l-rhamnopyranoside (1) with 10 followed by benzoylation gave trisaccharide (12), which could be conveniently converted to a donor (14). Condensation of 14 with allyl 3,4-di-O-benzoyl-α-l-rhamnopyranoside (15) gave tetrasaccharide 16. Selective deacetylation of 16 gave the acceptor 17 which was ribosylated to furnish the protected pentasaccharide, and finally deprotection led to the title compound.  相似文献   

9.
A tetrasaccharide, α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose (1), the repeating unit of the cell-wall mannans of Microsporum gypseum and related species of Trychophyton, was synthesized using 6-O-acetyl-2,3,4-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (5) and 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (13) as the glycosyl donors in “the inverse Schmidt” procedure.  相似文献   

10.
The disaccharides 2-O-Me-α-L-Fucp-(1→2)-β-D-Galp-(1→OAllyl) 12, α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 15, and 2-O-Me-α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 18 have been synthesized. Glycosylation reactions were performed using ethyl 1-thiofucopyranosides as glycosyl donors and N-iodosuccinimide-triflic acid as the activating agent. The O-methylated disaccharides correspond to highly immunogenic O-glycan antigens occurring at the surface of Toxocara canis and Toxocara cati larvae.  相似文献   

11.
Abstract

A carboxylate-containing pentasaccharide, methyl O-(β-d-galactopyranosyl)-(1→4)-O-(β-d-glucopyranosyl)-(1→6)-O-{3-O-[(S)-1-carboxyethyl]-β-d-galactopyranosyl-(1→4)-O}-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-β-d-galactopyranoside (27) was synthesized by block condensation of suitably protected donors and acceptors. Phenyl 3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (17) was condensed with methyl 2,4,6-tri-O-benzyl-β-d-galactopyranoside (4) to afford a disaccharide, methyl O-(3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (18). Removal of chloroacetyl groups gave 4,6-diol, methyl 0-(3-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (19), in which the primary hydroxy group (6-OH) was then selectively chloroacetylated to give methyl O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (20). This acceptor was then coupled with 2,4,6-tri-O-acetyl-3-O-[(S)-1-(methoxycarbonyl)ethyl]-α-d-galactopyranosyl trichloroacetimidate (14) to afford a trisaccharide, methyl O-{2,4,6-tri-O-acetyl-3-O-[(S)-l-(methoxycarbonyl)ethyl]-β-d-galactopyranosyl}-(1→4)-O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (21). Removal of the 6-O-chloroacetyl group in 21 gave 22, which was coupled with 4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-2,3,6-tri-O-acetyl-α-d-glucopyranosyl trichloroacetimidate (23) to yield protected pentasaccharide 24. Standard procedures were used to remove acetyl groups and the phthalimido group, followed by N-acetylation, and debenzylation to yield pentasaccharide 27 and a hydrazide by-product (28) in a 5:1 ratio, respectively. Compound 27 contains a complete repeating unit of the capsular polysaccharide of type III group B Streptococcus in which terminal sialic acid is replaced by an (S)-1-carboxyethyl group.  相似文献   

12.
Abstract

The first total synthesis of tumor-associated glycolipid antigen, sialyl Lea, is described. Methylsulfenyl bromide-silver triflate-promoted coupling of 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (2) with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (3) afforded the pentasaccharide 4a and 5a in good yields. Glycosylation of 4a with methyl 2,3,4-tri-O-benzyl-1-thio-β-l-fucopyranoside (6) by use of N-iodosuccinimide (NIS) — trifluoromethanesulfonic acid (TfOH) as a promoter, gave the desired hexasaccharide 7. Compound 7 was converted into the α-trichloroacetimidate 10, via reductive removal of benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1, 3-diol (11), gave the β-glycoside 12. Finally, 12 was transformed, via selective reduction of the azide group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

13.
Abstract

A first total synthesis of a β-series ganglioside GQ1β (IV3Neu5Acα2, III6Neu5Acα2-Gg4Cer) is described. Regio- and stereoselective dimeric sialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-O-2,3,6-tri-O-benzyl-β-d-glucopyranoside (3) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (4) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter gave the desired pentasaccharide 5 containing α-glycosidically-linked dimeric sialic acids. This was transformed into the acceptor 6 by removal of the levulinyl group. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-d-galacto-2-nonulopyranosylonate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) with 6, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 8 in high yield. Compound 8 was converted into α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

14.
Abstract

A first total synthesis of a cholinergic neuron-specific ganglioside, GQ1bα (IV3Neu5Acα, III6Neu5Acα, II3Neu5Acα2-Gg4Cer) is described. Regio- and stereo-selective monosialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3,4-O-isopropylidene-β-d-galactopyranosyl)-(1→4)-O-(2,6-di-O-benzyl-β-dgalactopyranosyl)-(1→4)- O-2,3,6-tri-O-benzyl-β-dglucopyranoside (4) with methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-d glycero-d galacto-2-nonulopyranosid) onate (5), and subsequent dimericsialylation of the hydroxyl group at C-3 of the Gal residue with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d glycero-α-d galacto-2-nonulopyranosylono-1′,9-lactone)-4, 7-di-O-acetyl-3,5-dideoxy-2-thio-d glycero-d galacto-2-nonulopyranosid]onate (7), using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter, gave the desired hexasaccharide 8 containing α-glycosidically-linked mono- and dimeric sialic acids. This was transformed into the acceptor 9 by removal of the isopropylidene group. Condensation of methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d glycero-α-d galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-dgalactopyranoside (10) with 9, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 11 in high yield. Compound 11 was converted into α-trichloroacetimidate 14, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15), gave the β-glycoside 16. Finally, 16 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 18 in good yield.  相似文献   

15.
Two new flavonol glycosides, brachysides C and D, together with three known flavonol glycosides, were isolated from the leaves of Caragana brachyantha. The structures of brachysides C and D were elucidated on the basis of detailed spectroscopic analysis as quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside] and quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside]-4′-O-[α-l-rhamnopyranoside], respectively. The presence of flavonol tetra- and triglycosides bearing a sugar moiety at position 5 was the first report from this genus Caragana.  相似文献   

16.
Abstract

The glycosidic coupling reaction of 1,2-anhydro-3,4,6-tri-O-benzyl-β-d-mannopyranose (7), 1,2-anhydro-3,4,6-tri-O-benzyl-α-d-galactopyranose (21), and 1,2-anhydro-3,4-di-O-benzyl-α-d-xylopyranose (18) with N-tosyl- (10) or N-benzyloxycarbonyl- (11) L-serine methyl ester provides a new stereocontrolled synthesis of 1,2-trans linked glycopeptides. The 1,2-anhydro sugars are shown to react smoothyl with 10 or 11 in the presence of Lewis acid (ZnCl2 or AgOTf) as well as powdered 4A molecular sieves in CH2Cl2 at room temperature to afford glycosyl serine derivatives with high stereoselectivity and high yield in less than 30 min. An improved method using 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-mannopyranosyl chloride (6) as the key intermediate for ring closure was applied for the synthesis of 1,2-anhydro-3,4,6-tri-O-benzyl-β-d-mannopyranose.  相似文献   

17.
Saraca asoca (Roxb.) de Wilde, a common tree of India, is popularly used in the Ayurvedic and modern herbal systems of medicine for genito-urinary problems of women. Considering the reported antimicrobial or anti-inflammatory effect of S. asoca bark against such infections, we studied the anti-inflammatory activity-guided isolation of active compounds from methanol extract. The methanol extract of bark has yielded 10 compounds out of which 3′-deoxyepicatechin-3-O-β-d-glucopyranoside (6) and 3′-deoxycatechin-3-O-α-l-rhamnopyranoside (8) have been found to be in vitro and in vivo active. 3′,5-Dimethoxy epicatechin (3), 3′-deoxyepicatechin-3-O-β-d-glucopyranoside (6), 3′-deoxycatechin-3-O-α-l-rhamnopyranoside (8) and epigallocatechin (9) are being reported for the first time from S. asoca.  相似文献   

18.
A new ellagic acid derivative from Polygonum runcinatum   总被引:1,自引:0,他引:1  
A new ellagic acid derivative, 3,3′-dimethylellagic acid-4′-O-(6″-galloyl)-β-d-glucoside, named runcinatside (5), together with four known compounds 3,3′-dimethylellagic acid (1), 3,3′,4′-trimethylellagic acid (2), 3,3′-dimethylellagic acid-4′-O-β-d-glucoside (3) and 3-methylellagic acid-4′-O-α-l-rhamno-pyranoside (4), was isolated from the roots of Polygonum runcinatum Buch.-Ham. ex D.Don Var. sinense Hemsl and the structures of these compounds were established by spectroscopic methods and comparison with previously reported data. All compounds showed antioxidant activities in vitro and compound 5 possessed the highest activity.  相似文献   

19.
Three new triterpenoid saponins, ardisicrenoside O (1), ardisicrenoside P (2) and ardisicrenoside Q (3) together with three known compounds, 3β,16α-dihydroxy-30-methoxy-28, 30-epoxy-olean-12-en, cyclamiretin A 3-O-β-d-glucopyranosyl-(1→2) -α-l-arabinopyranoside and cyclamiretin A 3-O-β-d-glucopyranosyl-(1→4) -α-l-arabinopyranoside were isolated from the roots of Ardisia crenata Sims. Their structures were determined by one- and two-dimensional NMR techniques, including HSQC, HMBC and TOCSY experiments, as well as acid hydrolysis and GC analysis. All isolates were evaluated for the cytotoxic activities on two human cancer cell lines and compounds 3, 5 and 6 showed significant cytotoxicity.  相似文献   

20.
The terminal disaccharide of the O-antigenic polysaccharide of Vibrio cholerae O37, 4-O-methyl-α-D-QuiNAc-(1→4)-α-d-QuiNAc, was synthesized as methyl glycoside involving glycosylation between glycosyl donor ethyl 2-azido-3-O-benzyl-2,6-dideoxy-4-O-methyl-6-iodo-1-thio-α-d-glucopyranoside and glycosyl acceptor methyl 2-azido-3-O-benzyl-2,6-dideoxy-6-iodo-α-d-glucopyranoside. Dehalogenation, global deprotection, and reduction of the azide to amine were effected in one step by catalytic hydrogenation. It was followed by selective N-acetylation to give the desired deprotected disaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号