首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a simple large eddy simulation (LES)-based lattice Boltz- mann model (LBM) is developed for thermal turbulence research. This model is validated by some benchmark tests. The numerical results demonstrate the good performance of the present model for turbulent buoyant flow simulation.  相似文献   

2.
Zhao Yu  Liang-Shih Fan   《Particuology》2010,8(6):539-543
The lattice Boltzmann method (LBM) has gained increasing popularity in the last two decades as an alternative numerical approach for solving fluid flow problems. One of the most active research areas in the LBM is its application in particle-fluid systems, where the advantage of the LBM in efficiency and parallel scalability has made it superior to many other direct numerical simulation (DNS) techniques. This article intends to provide a brief review of the application of the LBM in particle-fluid systems. The numerical techniques in the LBM pertaining to simulations of particles are discussed, with emphasis on the advanced treatment for boundary conditions on the particle-fluid interface. Other numerical issues, such as the effect of the internal fluid, are also briefly described. Additionally, recent efforts in using the LBM to obtain closures for particle-fluid drag force are also reviewed.  相似文献   

3.
ABSTRACT

A new parallel method for simulations with non-overlapping disconnected mesh domains but adjacent boundaries is presented and studied. This technique allows simulations using 3D unstructured meshes that are independent.  相似文献   

4.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
格子-波尔兹曼法是近年来新兴的一种计算流体力学数值方法。随着这种方法的不断发展,人们将它用于流体的仿真、优化等不同场合。与此同时,一些与流场流速和压强相关的物理量(如能耗)的求解也成为关注的焦点。本文介绍了能耗这一流体宏观量的格子-波尔兹曼法求解及其实现。与传统的有限差分法不同,本文在求解有关的速度梯度时使用了格子-波尔兹曼-矩法,这种方法不但能够避免有限差分法在边界处失效的缺点,而且计算简单,算法局部性好,适合大规模并行计算。本文在分析其数值解精度的基础上,使用这种方法进行了以能耗极小为目标的直通道内椭圆挡块的参数优化。这些分析和算例分别定量和定性地说明了本文算法的准确性。  相似文献   

7.
In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy simulation (LES) of turbulent shallow water flows (MRT‐LABSWETM). The model is based on the two‐dimensional nonlinear shallow water equations, giving the depth‐averaged features. It is verified by applying the model in three typical cases in engineering with turbulence: (i) the flow around a square cylinder, (ii) plane cavity flow, and (iii) flows in a junction of 90°. The results obtained by the MRT‐LABSWETM are compared with BGK‐LABSWETM results and experimental data. The objectives of this study are to validate the MRT‐LABSWETM in a turbulence simulation and perform a comparative analysis between the results of BGK‐LABSWETM and MRT‐LABSWETM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium distribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described particularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil.  相似文献   

11.
This work focuses upon the development of a wavelet-based variant of the variational multiscale method (VMS) for accurate and efficient large eddy simulation (LES) called wavelet-based VMS-LES (WMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon the pressure-stabilized discontinuous Galerkin finite element method (DG-FEM). The VMS approach is designed to produce an a priori scale separation of the governing equations, in a manner which makes no assumptions on either the boundary conditions or the mesh uniformity. Using second-generation wavelets (SGWs) elementwise for scale separation ensures, on one hand, the preservation of the computational compactness of the DG-FEM scheme and, on the other hand, the ability to achieve scale separation in wavenumber space. The optimal space-frequency localization property of the SGW provides an improvement over the commonly used Legendre polynomials. The suitability of the elementwise SGW scale-separation operation as a tool for error indication has been demonstrated in an h-adaptive computation of the reentrant corner test case. Finally, the DG-FEM solver and the WMS-LES method have been assessed through simulations upon the three-dimensional Taylor-Green vortex test case. Our results indicate that the WMS-LES approach exhibits a distinct improvement over the monolevel LES approach. This effect is not produced by a change in the magnitude of the subgrid dissipation but rather by the redistribution of the subgrid dissipation in wavenumber space.  相似文献   

12.
By coupling natural boundary element method (NBEM) with FEM based on domain decomposition, the torsion problem of the square cross-sections bar with cracks have been studied, the stresses of the nodes of the cross-sections and the stress intensity factors have been calculated, and some distribution pictures of the stresses have been drawn. During computing, the effect of the relaxed factors to the convergence speed of the iterative method has been discussed. The results of the computation have confirmed the advantages of the NBEM and its coupling with the FEM. Foundation item: the State Key Laboratory of Science and Engineering Computation Biography: ZHAO Hui-ming (1971-)  相似文献   

13.
In the present paper, a comparative study of numerical solutions for Newtonian fluids based on the lattice‐Boltzmann method (LBM) and the classical finite volume method (FVM) is presented for the laminar flow through a 4:1 planar contraction at a Reynolds number of value one, Re=1. In this study, the stress field for LBM is directly obtained from the distribution function. The calculations of the stress based on the FVM‐data use the evaluations of velocity gradients with finite differences. The stress field for both LBM and FVM is expressed in the present study in terms of the shear stress and the first normal stress difference. The lateral and axial profiles of the velocity, the shear stress and the first normal stress difference for both methods are investigated. It is shown that the LBM results for the velocity and the stresses are in excellent agreement with the FVM results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A brief review of recent progress in the field of computational aeroacoustics (CAA) is proposed. This paper is complementary to the previous reviews of Tam [(1995a) “Computational aeroacoustics: issues and methods”, AIAA J. 33(10), 1788–1796], Lele [(1997) “Computational Aeroacoustics: a review”, AIAA Paper 97–0018, 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada] and Glegg [(1999) “Recent advances aeroacoustics: the influence of computational fluid dynamics”, 6th International Congress on Sound and Vibration, Copenhagen, Danemark, 5–8 July, 43–58] on advances in CAA. After a short introduction concerning the current motivations of jet noise studies, connections between computational fluid dynamics (CFD) and CAA using hybrid approaches are discussed in the first part. The most spectacular advances are probably provided by the direct computation of jet noise, and some recent results are shown in the second part.  相似文献   

15.
The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (α) and the separation distance (d0) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions.  相似文献   

16.
General Galerkin (G2) is a new computational method for turbulent flow, where a stabilized Galerkin finite element method is used to compute approximate weak solutions to the Navier–Stokes equations directly, without any filtering of the equations as in a standard approach to turbulence simulation, such as large eddy simulation, and thus no Reynolds stresses are introduced, which need modelling. In this paper, G2 is used to compute the drag coefficient cD for the flow past a circular cylinder at Reynolds number Re=3900, for which the flow is turbulent. It is found that it is possible to approximate cD to an accuracy of a few percent, corresponding to the accuracy in experimental results for this problem, using less than 105 mesh points, which makes the simulations possible using a standard PC. The mesh is adaptively refined until a stopping criterion is reached with respect to the error in a chosen output of interest, which in this paper is cD. Both the stopping criterion and the mesh‐refinement strategy are based on a posteriori error estimates, in the form of a space–time integral of residuals times derivatives of the solution of a dual problem, linearized at the approximate solution, and with data coupling to the output of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The finite volume method (FVM) and the lattice Boltzmann method (LBM) are coupled with each other to construct a new cross-scaling method to deal with the porous flow problem. To check the effectiveness of our developed cross-scaling LBM—FVM, the above mentioned problem is also solved by the well known LBM—LBM. Based on the data checking of the published data and the results of LBM—FVM and LBM—LBM, good agreement is observed.  相似文献   

18.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and Al2O3. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical methods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ = 2.5 when Ra = 106 while at λ = 1.5 for other Rayleigh numbers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号