首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The chemical class of benzopyrones consists of a large number of compounds possessing the benzene ring fused with the oxygen containing pyrone ring. This class is further divided into the benzo-γ-pyrone i.e. flavonoids and the benzo-α-pyrone i.e. coumarins. Coumarins, the 2H-chromen-2-one and its related analogues exhibit a multitude of biological activities. Attempts made in the continuous chemical diversification of this parent nucleus have brought significant alterations in the biological activity among the generated compounds and therefore, this category of benzopyrones has been much exploited in the current medicinal chemistry research. Thus, it was thought worthwhile to present a review on the newly synthesised heterocyclic coumarinyl derivatives with their physicochemical parameters and biological activity, attempted by our co-workers. This review also creates a platform for highlighting approaches and strategies used in the chemical synthesis of coumarinyl compounds along with their biological activity relating to their structure.  相似文献   

2.
We describe the use of 3-bromocyclohexane-1,2-dione, an air stable, versatile reagent for the Hantzsch thiazole synthesis and the synthesis of other closely related heterocycles.  相似文献   

3.
The 3,3'-pyrrolidinyl-spirooxindole unit is a privileged heterocyclic motif that forms the core of a large family of alkaloid natural products with strong bioactivity profiles and interesting structural properties. Significant recent advances in the synthesis of this fused heterocyclic system have led to intense interest in the development of related compounds as potential medicinal agents or biological probes.  相似文献   

4.
5.
The curing reactions of the epoxy resins tetraglycidyl diaminodiphenyl methane (TGDDM) and tetraglycidyl methylenebis (o-toluidine) (TGMBT) using diaminodiphenyl sulfone (DDS), diaminodiphenyl methane (DDM) and diethylenetriamine (DETA) as curing agents were studied kinetically by differential scanning calorimetry. The dynamic scans in the temperature range 20°–300°C were analyzed to estimate the activation energy and the order of reaction for the curing process using some empirical relations. The activation energy for the various epoxy systems is observed in the range 71.9–110.2 kJ·mol–1. The cured epoxy resins were studied for kinetics of thermal degradation by thermogravimetry in a static air atmosphere at a heating rate of 10 deg·min–1. The thermal degradation reactions were found to proceed in a single step having an activation energy in the range 27.6–51.4 kJ·mol–1.
Zusammenfassung Die Vernetzungsreaktionen der Epoxidharze Tetraglycidyl-diamino-diphenyl-methan (TGDDM) und Tetraglycidyl-methylen-bis(o-toluidin) (TGMBT) unter Verwendung von Diaminodiphenylsulfon (DDS), Diaminodiphenylmethan (DDM) und Diethylentriamin (DETA) als Vernetzungsmittel wurden kinetisch mittels DSC untersucht. Die dynamischen Scans im Temperaturbereich 20°–300°C wurden analysiert, um unter Anwendung einiger empirischer Gleichungen die Aktivierungsenergie und die Reaktionsordnung des Vernetzungsprozesses zu ermitteln. Die Aktivierungsenergie der einzelnen Epoxy-Systeme liegt im Bereich 71.9–110.2 kJ·mol–1. An der ausgehärteten Harze wurde mittels TG in einer statischen Luftatmosphäre un deiner Aufheizgeschwindigkeit von 10 Grad/min die Kinetik des termischen Abbaues untersucht. Man fand, daß die thermiscehn Abbaureaktionen in einem Schritt ablaufen und ihre Aktivierungsenergie im Intervall 27.6–51.4 kJ·mol–1 liegt.
  相似文献   

6.
This study reports the utilization of three approaches – pharmacophore, CoMFA/CoMSIA and HQSAR studies – to identify the essential structural requirements in 3D chemical space for the modulation of the antimalarial activity of substituted 1,2,4-trioxanes. The superiority of quantitative pharmacophore-based alignment (QuantitativePBA) over global minima energy conformer-based alignment (GMCBA) has been reported in CoMFA and CoMSIA studies. The developed models showed good statistical significance in internal validation (q 2, group cross-validation and bootstrapping) and performed very well in predicting the antimalarial activity of test set compounds. Structural features in terms of their steric, electrostatic and hydrophobic interactions in 3D space have been found to be important for the antimalarial activity of substituted 1,2,4-trioxanes. Further, the HQSAR studies based on the same training and test set acted as an additional tool to find the sub-structural fingerprints of substituted 1,2,4-trioxanes for their antimalarial activity. Together, these studies may facilitate the design and discovery of new substituted 1,2,4-trioxanes with potent antimalarial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号