首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclopropanation of the title compound (S)‐ 2 with various sulfur ylides has been examined. The reaction with methylenesulfonium ylides gave the corresponding cyclopropanes 4 with low diastereoselectivity. The formation of the second product 5 arising from the subsequent methylenation of the CO group was also observed. A clean cyclopropanation of (S)‐ 2 took place with ethyl (dimethylsulfanylidene)acetate affording the cyclopropanes 6 , with high π‐facial selectivity, but low endo/exo ratio. A high endo/exo selectivity, but low π‐facial selectivity was observed in the reaction of (S)‐ 2 with (2‐ethoxy‐2‐oxoethyl)(diphenyl)sulfonium tetrafluoroborate. The use of α‐bromoacetate carbanion as the cyclopropanation reagent resulted in the formation of 6 with very high facial and endo/exo‐selectivity. In a proposed explanation of the stereochemical outcome of the cyclopropanations investigated, the ground‐state conformation of the sulfoxide 2 and the transition‐state structure of the initial addition step were taken into account.  相似文献   

2.
Dye adsorption and microstructure of TiO2 film are important properties when it is used as photoelectrode of dye-sensitized solar cells (DSCs). This study investigated the application of a low crystallinity TiO2 film in DSCs. The low crystallinity TiO2 film is composed of interconnected spherical particles with an average size of 20 nm and has homogeneous mesoporous inner structure. A DSC based on the anatase nanocrystalline mesoporous film prepared by P25 was used for comparison purpose. It is shown that although loaded with much less dye, the DSC based on the low crystallinity TiO2 film generated Isc (short circuit photocurrent) as much as the one based on the conventional anatase nanocrystalline film does and obtained higher Voc (open circuit photovoltage) as well as ff (fill factor). The overall light-to-electricity efficiency (η) of the DSC based on the low crystallinity TiO2 film reached 5.37%, while the η of the DSC based on anatase nanocrystalline film was 4.69% in this work condition. It is suggested that a low crystallinity TiO2 mesoporous film with a proper microstructure is as efficient as the anatase nanocrystalline mesoporous film when used in DSCs.  相似文献   

3.
To achieve high open-circuit voltage (Voc) and low acceptor content, the molecular design of a small-molecule donor with low energy loss (Eloss) is very important for solution-processable organic solar cells (OSCs). Herein, we designed and synthesized a new coplanar A−D−A structured organic small-molecule semiconductor with non-fused ring structure π-bridge, namely B2TPR , and applied it as donor material in OSCs. Owing to the strong electron-withdrawing effect of the end group and the coplanar π-bridge, B2TPR exhibits a low-lying highest occupied molecular orbital and strong crystallinity. Furthermore, benefiting from the coplanar molecular skeleton, the high hole mobility, balanced charge transport and reduced recombination were achieved, leading to a high fill factor (FF). The OSCs based on B2TPR : PC71BM blend film (w/w=1 : 0.35) demonstrates a moderate power conversion efficiency (PCE) of 7.10 % with a remarkable Voc of 0.98 V and FF of 64 %, corresponding to a low fullerene content of 25.9 % and a low Eloss of 0.70 eV. These results demonstrate the great potential of small-molecule with structure of B2TPR for future low-cost organic photovoltaic applications.  相似文献   

4.
Treatment of a meso‐diarylporphyrin with PhI(OAc)2 in the presence of BF3 ? OEt2 and propionic acid affords the corresponding porphyrinquinone in a high yield (91%). A novel quinone derived from mesomeso β–β doubly‐fused diporphyrin was obtained as the sole byproduct (16% yield), which exhibits strong panchromatic absorption between 300 and 1000 nm. It has a low HOMO‐LUMO gap owing to expanded and low‐symmetry π‐planes.  相似文献   

5.
A challenge in thermoelectrics is to achieve intrinsically low thermal conductivity in crystalline solids while maintaining a high carrier mobility (μ). Topological quantum materials, such as the topological insulator (TI) or topological crystalline insulator (TCI) can exhibit high μ. Weak topological insulators (WTI) are of interest because of their layered hetero‐structural nature which has a low lattice thermal conductivity (κlat). BiTe, a unique member of the (Bi2)m(Bi2Te3)n homologous series (m:n=1:2), has both the quantum states, TCI and WTI, which is distinct from the conventional strong TI, Bi2Te3 (where m:n=0:1). Herein, we report intrinsically low κlat of 0.47–0.8 W m?1 K?1 in the 300–650 K range in BiTe resulting from low energy optical phonon branches which originate primarily from the localized vibrations of Bi bilayer. It has high μ≈516 cm2 V?1 s?1 and 707 cm2 V?1 s?1 along parallel and perpendicular to the spark plasma sintering (SPS) directions, respectively, at room temperature.  相似文献   

6.
A challenge in thermoelectrics is to achieve intrinsically low thermal conductivity in crystalline solids while maintaining a high carrier mobility (μ). Topological quantum materials, such as the topological insulator (TI) or topological crystalline insulator (TCI) can exhibit high μ. Weak topological insulators (WTI) are of interest because of their layered hetero-structural nature which has a low lattice thermal conductivity (κlat). BiTe, a unique member of the (Bi2)m(Bi2Te3)n homologous series (m:n=1:2), has both the quantum states, TCI and WTI, which is distinct from the conventional strong TI, Bi2Te3 (where m:n=0:1). Herein, we report intrinsically low κlat of 0.47–0.8 W m−1 K−1 in the 300–650 K range in BiTe resulting from low energy optical phonon branches which originate primarily from the localized vibrations of Bi bilayer. It has high μ≈516 cm2 V−1 s−1 and 707 cm2 V−1 s−1 along parallel and perpendicular to the spark plasma sintering (SPS) directions, respectively, at room temperature.  相似文献   

7.
The single crystal structure of RbPbPS4 was determined at 293 K. The compound crystallizes in the orthorhombic space group Pnma (No. 62) with a = 17.486(1) Å, b = 6.7127(5) Å, c = 6.4191(5) Å, V = 753.5(1) Å3, Z = 4. Differential scanning calorimetry shows a reversible structural phase transition at 182 K on cooling and at 184 K on heating. The phase transition is attributed to the displacement of the lead atoms which are located on the mirror planes at room temperature. In the low temperature modification, the Pb2+ ions are moved away from the mirror plane thus changing the coordination number from seven at low temperature to six at room temperature. The low temperature phase of RbPbPS4 is non‐centrosymmetric with space group P212121, which is a maximal translationengleiche subgroup index 2 (t2) of Pnma. The analysis demonstrates that the phase transition is of second order, or at least nearly so.  相似文献   

8.
Polycondensation normally proceeds in a step-growth reaction manner to give polymers with a wide range of molecular weights. However, the polycondensation of potassium 2-alkyl-5-cyano-4-fluorophenolate ( 1 ) proceeded at 150°C in a chain polymerization manner from initiator, 4-fluoro-4′-trifluoromethyl benzophenone ( 2 ), to give aromatic polyethers having controlled molecular weights and low polydispersities (Mw/Mn ⩽ 1.2). The resulting polycondensation of 1 had all of the characteristics of living polymerization and displayed a linear correlation between molecular weight and monomer conversion, maintaining low polydispersities. Sulfolane was a better solvent for chain-growth polycondensation of 1 than other aprotic solvents. The polyether from 1 with a low polydispersity showed higher crystallinity than that with a broad molecular weight distribution, obtained by the conventional polycondensation of 1 without 2 .  相似文献   

9.
采用电弧放电法制备内嵌镧金属富勒烯的原灰,通过改变氦气压力及电流强度来提高内嵌镧金属富勒烯产率。原灰由1,2,4-三氯苯提取并回溶入甲苯后,利用分析型高相液相色谱(HPLC)对提取液中各富勒烯组分进行分析。通过分别衡量3种常见含镧金属富勒烯La@C2v-C82、La@Cs-C82和La_2@C_(80)与C84的相对峰面积比,探讨了氦气压力和电流强度等对3种金属富勒烯产率的影响。实验结果表明,氦气压力与电流强度共同决定了金属富勒烯的产率,在(1)低电流高氦气压、(2)中等电流中等氦气压、(3)高电流低氦气压的条件下都可以高产率地获得含镧金属富勒烯。此外,调整电流强度和氦气压力可以改变La@C2v-C82和La@Cs-C82的相对比例。例如,在电流为100、120 A或氦气压为20、35 k Pa时,此前认为的"minor"异构体La@Cs-C82的含量甚至高于"major"异构体La@C2v-C82。还发现降低电流强度或减小氦气压力可促进La_2@C_(80)的生成,这表明La_2@C_(80)与La@C82的形成过程可能是不同的。  相似文献   

10.
To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ ) and excellent figure of merit (z T ). Herein we report a scalable (ca. 11.0 g per batch) and low‐temperature colloidal processing route for Bi2Te2.5Se0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m−1 K−1) and the highest z T (1.18) among state‐of‐the‐art Bi2Te3−x Sex materilas. Additional benefits of the unprecedented low relative density (68–77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase‐transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields.  相似文献   

11.
The configurational and solvency properties of low molecular weight sodium polyacrylate have been determined for a wide range of ionic strength solutions, from intrinsic viscosity data in the polymer literature.The variations of the polymer properties with ionic strength (I) are described very well by simple mathematical expressions. Thus, a linear relationship was found between the solvency parameter and 1/I (1/2), while the variations of the expansion factor and the radius of gyration with 1/I (1/2) were described by second order polynomials.LowI solutions (i.e. < 0.01) have a high solvency for sodium polyacrylate. In such solutions the polymer is in a highly expanded configuration. Thus, the radius of gyration of a typical, low molecular weight (ca. 5000 g mol–1) sodium polyacrylate approaches the limiting value of ca. 4.5 nm atI<0.01.Conversely, high ionic strength solutions (i.e. >0.10) have a low solvency for sodium polyacrylate. In such solutions the polymer is in a virtually unexpanded configuration. Thus, the radius of gyration of a typical, low molecular weight sodium polyacrylate approaches the limiting value of ca. 2.0 nm atI>0.10.  相似文献   

12.
一种新型低带隙共轭聚合物的合成及其光学性质   总被引:2,自引:0,他引:2  
刘中义  李彦军  黄鹏程 《化学学报》2008,66(8):999-1002
在钯催化剂作用下, 通过4,7-二(5-溴-2-噻吩基)[2,1,3]苯并噻二唑与2,5-二乙炔基-3-辛基噻吩的偶联反应, 合成了一种新的共轭高分子聚4,7-二(2-噻吩基)苯并噻二唑-3-辛基噻吩二炔(PTE-DTBT). 通过紫外可见吸收光谱及荧光光谱对其光学性质进行了研究. 紫外-可见吸收谱结果表明, PTE-DTBT的固体膜光学带隙为1.71 eV; 电化学测试其带隙为1.88 eV. TiO2/PTE-DTBT共混固体膜的荧光发射谱结果表明电子供体PTE-DTBT分子与电子受体TiO2分子间存在有效的电子转移.  相似文献   

13.
采用电弧放电法制备内嵌镧金属富勒烯的原灰,通过改变氦气压力及电流强度来提高内嵌镧金属富勒烯产率。原灰由1,2,4-三氯苯提取并回溶入甲苯后,利用分析型高相液相色谱(HPLC)对提取液中各富勒烯组分进行分析。通过分别衡量3种常见含镧金属富勒烯La@C2v-C82、La@Cs-C82和La2@C80与C84的相对峰面积比,探讨了氦气压力和电流强度等对3种金属富勒烯产率的影响。实验结果表明,氦气压力与电流强度共同决定了金属富勒烯的产率,在(1)低电流高氦气压、(2)中等电流中等氦气压、(3)高电流低氦气压的条件下都可以高产率地获得含镧金属富勒烯。此外,调整电流强度和氦气压力可以改变La@C2v-C82和La@Cs-C82的相对比例。例如,在电流为100、120 A或氦气压为20、35 kPa时,此前认为的"minor"异构体La@Cs-C82的含量甚至高于"major"异构体La@C2v-C82。我们还发现,降低电流强度或减小氦气压力可促进La2@C80的生成,这表明La2@C80与La@C82的形成过程可能是不同的。  相似文献   

14.
The title compound, C6H16N+·Br?, was refined against room‐temperature data in space group P21 as a racemic twin by Kociok‐Köhn, Lungwitz & Filippou [Acta Cryst. (1996). C 52 , 2309–2311]. At low temperature, we found a different phase, which is characterized by a different cell (twice as big as the cell at room temperature) and a different space group (P21/n). Surprisingly, the cell parameters obtained at low temperature can be transformed into those measured at ambient temperature. Even the coordinates can be transformed and the structure can be refined in the small cell. However, some warning signs (e.g. a low |E2 ? 1| value, apparent twinning and peaks in the electron‐density map) point to the correct cell and space group.  相似文献   

15.
As a function of temperature, the hexamethylenetetramine–2‐methylbenzoic acid (1/2) cocrystal, C6H12N4·2C8H8O2, undergoes a reversible structural phase transition. The orthorhombic high‐temperature phase in the space group Pccn has been studied in the temperature range between 165 and 300 K. At 164 K, a t2 phase transition to the monoclinic subgroup P21/c space group occurs; the resulting twinned low‐temperature phase was investigated in the temperature range between 164 and 100 K. The domains in the pseudomerohedral twin are related by a twofold rotation corresponding to the matrix (100/00/00). Systematic absence violations represent a sensitive criterium for the decision about the correct space‐group assignment at each temperature. The fractional volume contributions of the minor twin domain in the low‐temperature phase increases in the order 0.259 (2) → 0.318 (2) → 0.336 (2) → 0.341 (3) as the temperature increases in the order 150 → 160 → 163 → 164 K. The transformation occurs between the nonpolar point group mmm and the nonpolar point group 2/m, and corresponds to a ferroelastic transition or to a t2 structural phase transition. The asymmetric unit of the low‐temperature phase consists of two hexamethylenetetramine molecules and four molecules of 2‐methylbenzoic acid; it is smaller by a factor of 2 in the high‐temperature phase and contains two half molecules of hexamethylenetetramine, which sit across twofold axes, and two molecules of the organic acid. In both phases, the hexamethylenetetramine residue and two benzoic acid molecules form a three‐molecule aggregate; the low‐temperature phase contains two of these aggregates in general positions, whereas they are situated on a crystallographic twofold axis in the high‐temperature phase. In both phases, one of these three‐molecule aggregates is disordered. For this disordered unit, the ratio between the major and minor conformer increases upon cooling from 0.567 (7):0.433 (7) at 170 K via 0.674 (6):0.326 (6) and 0.808 (5):0.192 (5) at 160 K to 0.803 (6):0.197 (6) and 0.900 (4):0.100 (4) at 150 K, indicating temperature‐dependent dynamic molecular disorder. Even upon further cooling to 100 K, the disorder is retained in principle, albeit with very low site occupancies for the minor conformer.  相似文献   

16.
Functionalization of 2,1,3-benzothiadiazole (BTD) with thiols at C-5 position remains low explored. Moreover, the arylthiol-substitutions at this position are also unexplored and can not be found by a SN2 or SN1 reaction. In this sense, herein we present a new palladium-catalyzed methodology for a wide variety of unpublished 5-arylsulfanyl-benzo-2,1,3-thiadiazole derivatives synthesis with moderate to high yields using a low catalytic loading of Pd(L-Pro)2 as low-coast, and efficient catalyst in low reaction time. Besides, we concluded that the pKa of thiol species has an important role in this catalysis, mainly in the CMD like catalytic cyclo process, which strongly interferes in the reaction yields. Furthermore, arylsulfanyl-benzo-2,1,3-thiadiazoles derivatives have been assessed (in vitro) as potential acetylcholinesterase inhibitors.  相似文献   

17.
Tripodal imidazole containing ligands, bis((2‐pyridyl)methyl)(1‐methylimidazole‐2‐yl)methyl)amine (BPIA) and bis(1‐methylimidazole‐2‐yl)methyl)((2‐pyridyl)methyl)amine (BIPA), were synthesized and used for copper catalyzed atom transfer radical polymerization (ATRP) of n‐butyl acrylate (nBA). The molecular weights of poly(n‐butyl acrylate) (PnBA) catalyzed by CuBr/BPIA and CuBr/BIPA complexes increased linearly with nBA conversions and they were close to theoretical values with low polydispersities. ATRP equilibrium rate constant (KATRP) measurements showed that bothCuBr/BPIA and CuBr/BIPA complexes had high KATRP values, similar to that of CuBr/tri(2‐pyridylmethyl)amine (TPMA), which is one of the ATRP most active ligands. Activators regenerated by electron transfer (ARGET) ATRP of nBA with CuBr2/BPIA and CuBr2/BIPA complexes were also conducted and polymerization reached high nBA conversions, resulting in PnBA with low polydispersities. This suggests that the copper complexes with BPIA and BIPA were sufficiently stable and active to conduct ATRP when catalyst concentration was low. ARGET ATRP to form high molecular weight PnBA with CuBr2/BPIA and CuBr2/BIPA complexes was also successful. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2015–2024, 2008  相似文献   

18.
Maurice Kleman 《Liquid crystals》2013,40(10):1355-1367
Abstract

Starting from recent experiments in non-ionic surfactants, we discuss various topics characteristic of low rigidity K 1 materials. (1) The stability of the lamellar and cubic phases is studied in a simple model involving K 2 the saddle-splay constant K 2, and entropy terms due to the chains. We expect the lamellar phase to have a large range of existence, and the cubic phase to be of small extent. (2) We compare to cubic phases stability in large K 1 materials. We discuss the mobility of edge dislocations on the basis of a new model of the core which involves stretching of the core layers in one dimension, and easy nucleation of pores in this region. The core extension is a characteristic length of low K 1 materials which is much larger than de Gennes' length for microemulsions with a similar low K 1.  相似文献   

19.
The strain energies and through-space distances between the two bridgehead E atoms of a selection of 1,3-dimethyl-1,3-ditetrelbicyclo[1.1.1]pentanes (tetrel E = Si, Ge or Sn) were examined by quantum chemical calculations at MP2 and B3LYP levels. The aim is to identify which bridges lead to short through-space E,E distances, and simultaneously, to as low strain as possible. A short E,E distance should improve through-space interaction, and a low strain should promote the thermal stability and possibly also facilitate their synthesis. The bridges examined included CH2, CMe2, CtBu2, C(CH2)n (n = 2–4), O, NMe, S, PMe, SiMe2, GeMe2, and SnMe2. The calculations indicate that the phospha bridge is a good compromise providing reasonably low strain as well as E,E through-space distances which are only longer than normal E–E single bonds by factors of 1.06–1.10. This paper is dedicated to Professor Mitsuo Kira in recognition of his stimulating Si chemistry and his 2005 Wacker Award.  相似文献   

20.
The natural β-cyclodextrin (βCD) and its complexes have limited solubility in aqueous solutions. This low aqueous solubility, as well as low aqueous solubility of the guest molecule (i.e. triclosan or triclocarban (TCC)), can result in low complexation efficiency (CE). The purpose of this study was to enhance the apparent intrinsic solubility (S 0) of the guest molecule and its βCD complexes through ionization and addition of auxiliary compounds such as polymers, amino acids and metal ions. Both triclosan (pK a 7.9) and TCC (pK a 12.7) are weak acids. Addition of ethanol to the complexation medium enhanced S 0 of both triclosan and TCC but at the same time ethanol lowered the stability constant (K c ) of their βCD complexes resulting in overall lowering of CE. Addition of small amount of water-soluble polymers enhanced the βCD solubilization of both guests, and addition lysine enhanced the solubilization of TCC. Ionization of triclosan resulted in significant enhancement of CE and enhanced triclosan release from tablets containing triclosan/βCD complex. The effect of ionization was not as pronounced in the case of TCC.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号