首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polymers derived from reacting Group IVB metallocene dihalides and the matrix alpha-cyano-4-hydroxycinnamic acid act as their own matrix agent when performing MALDI MS. Ion fragments containing two repeat units and greater are formed. The results are similar to those obtained employing graphite as the matrix material. The advantage of employing graphite as a comparative standard is that non-interfering ion fragment clusters are not produced by graphite. This is the second report of the inclusion of alpha-cyano-4-hydroxycinnamic acid into a condensation polymer and the use of the polymer itself as a matrix material indicating that this approach can be successfully applied to other systems. The addition of graphite as a matrix material allows the mass range to increase for the reflective mode.  相似文献   

2.
We describe the initial synthesis of DMSO and water-soluble titanocene polyethers through reaction of the titanocene dichloride and various poly(ethylene glycols) employing commercially available reactants. Infrared, proton NMR, and MALDI MS results are consistent with the titanocene-containing polyether structure. The materials are polymeric with chain lengths ranging from 1500 to 4. They exhibit good inhibition of a variety of cancer cell lines including two pancreatic cancer cell lines.  相似文献   

3.
4.
5.
This article describes the polyaddition of bifunctional five‐membered cyclic carbonates and diethylenetriamine. The polyaddition proceeded via the selective addition of the primary amino group to the cyclic carbonates to give poly(hydroxyurethane)s bearing a secondary amine structure in the main chain. The resulting poly (hydroxyurethane) having a secondary amine structure was crosslinked by a reaction with a bifunctional dithiocarbonate to give a networked poly(hydroxyurethane–mercaptothiourethane). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5899–5905, 2005  相似文献   

6.
A series of new poly(arylene ether phenyl-s-triazine)s was prepared by the nucleophilic aromatic substitution polymerization of the potassium salt of bisphenols with 2,4-bis (halophenyl)-6-phenyl-s-triazine in N-methyl-2-pyrrolidone at elevated temperature. The polymers with inherent viscosities exceeding 0.5 were obtained after polymerization for 1 h using 2,4-bis(fluorophenyl)-6-phenyl-s-triazine as a monomer. The glass transition temperatures of the resulting polymers ranged from 200 to 260°C depending on the bisphenol used in the polymer synthesis. The poly(arylene ether phenyl-s-triazine)s demonstrated excellent thermal stabilities in excess of 490°C (5% weight loss in air). The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether phenyl-s-triazine)s belong to the most superior class of heat resistant polymers, such as polyimide Kapton?. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The poly(arylene ether)s were prepared by the nucleophillic aromatic substitution polymerization of phenolphthalin and its derivatives with activated aromatic difluorides. The polymers had glass transition temperatures ranging from 210 to 240°C. Though the monomers have no fluorescence, the resulting polymers fluoresced a light green color in solid and solution states. The maximum excitation and emission wavelengths are 420 nm and 470 nm, respectively. In the polymer solutions, the fluorescence intensity decreased gradually, but the intensity was recovered by heating the polymer at 220°C for a few minutes. The fluorescent polymer had a stable radical. A model compound having the same repeating unit of the polymer was also prepared. The fluorescence properties of this model were almost the same as those of the polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Poly(arylene ether ketone)s containing imide units were prepared by the aromatic nucleophilic displacement reaction of the potassium salts of bisphenols with bis(4-fluorobenzoyl)phthalimides in N-methyl-2-pyrrolidone at elevated temperature. The polymers having inherent viscosities of 0.34–0.77 dL/g were obtained in 2 h. The polymers exhibited glass transition temperatures ranging from 216 to 268°C and decomposition temperatures (5% weight loss under air atmosphere) ranging from 450–570°C mainly depending on the bisphenols used in the polymer synthesis. The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether ketone imide)s belong to a superior class of heat resistant polymers. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
4-Vinylbenzocyclobutene ( 1 ) was prepared by the nickel-catalyzed coupling reaction of 4-bromobenzocyclobutene with vinylbromide in 70% yield. Radical homopolymerization of 1 at 60°C for 24 h afforded poly(4 vinylbenzocyclobutene) [poly( 1 )] in 89% yield and radical copolymerizations of 1 with styrene (St) or methyl methacrylate (MMA) were carried out to obtain the corresponding copolymers. The Q = 1.07, e = 0.046. As a model reaction of the polymer reaction of the polymer reaction of poly( 1 ) and poly(4-vinylbenzocyclobutene-co-styrene) [copoly( 1 -St)] with dienophiles, the Diels-Alder reaction of benzocyclobutene with N-phenylmaleimide (MI) or maleic anhydride (MANH) was carried out to determine the optimum reaction conditions. Under the optimum condition, the Diels-Alder reaction of poly( 1 ) and copoly( 1 -St) with MI and MANH in the presence of 4-tert-butyl-catechol as an inhibitor were carried out to yield the corresponding polymers in good yields. The properties (solubilities, Tg, and temperature of 10% weight loss) of the products obtained from the polymer reaction were different from these of poly( 1 ). © 1995 John Wiley & Sons, Inc.  相似文献   

10.
11.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A method for the preparation of poly(aryl ether thianthrene)s has been developed in which the aryl ether linkage is generated in the polymer‐forming reaction. The thianthrene heterocycle is sufficiently electron‐withdrawing to allow fluoro displacement with phenoxides by nucleophilic aromatic substitution. The monomer for this reaction, 2,7‐difluorothianthrene, can be synthesized in a moderate yield by a simple reaction sequence. Semiempirical calculations at the PM3 level suggest that 2,7‐difluorothianthrene is sufficiently activated, whereas NMR spectroscopy (1H and 13C) indicates that the monomer is only slightly activated or (19F) not sufficiently activated for nucleophilic aromatic substitution. Model reactions with p‐cresol have demonstrated that the fluorine atoms on 2,7‐difluorothianthrene are readily displaced by phenoxides in high yields, and the process has been deemed suitable for polymer‐forming reactions. High‐molecular‐weight polymers have been produced from bisphenol A, bisphenol AF, and 4,4′‐biphenol. The polymers have been characterized with gel permeation chromatography, NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The glass‐transition temperatures for the polymers of different compositions and molecular weights range from 138 to 181 °C, and all the polymers have shown high thermooxidative stability, with 5% weight loss values in an air environment approaching 500 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6353–6363, 2004  相似文献   

13.
Poly(phenylene methylene) (PPM) was isolated in a broad range of molar masses by optimization of the catalytic polymerization of benzyl chloride with SnCl4 or FeCl3, followed by fractionation by Soxhlet extraction or phase separation in concentrated solutions in poor solvents. Low molar mass products were also obtained by quenching the reaction at moderate monomer conversions. Products with number average molar masses (Mn) ranging from 200 to 61,000 g mol−1 were isolated, the latter being an order of magnitude above the previously reported values. DSC analysis of polymers of different molar masses revealed that the glass transition temperature follows the Flory‐Fox equation reaching a plateau value of 65 °C at a molar mass between 10,000 and 20,000 g mol−1. The onset of decomposition temperature of higher molar mass products proceeds above 450 °C (maximum decomposition rate at 515 °C), according to TGA. Furthermore, the substitution pattern of PPM was discussed by study of chemical shifts of the methylene group by extensive NMR spectroscopy (1H, 13C, DEPT, and HSQC) and by comparison with two mono‐substituted derivatives of PPM—poly(2,4,6‐trimethylphenylene methylene) and poly(2,3,5,6‐tetramethylphenylene methylene)—which were synthesized analogous to PPM. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 309–318  相似文献   

14.
One-pot, spontaneous, and in-situ incorporation of Ru(II) complexes into a microgel (solubilized nanometer-scale network) has been achieved in near quantitative efficiency by a polymer-linking reaction of linear living poly(methyl methacrylate) (PMMA) with a bifunctional methacrylate (ethylene glycol dimethacrylate or bisphenol A dimethacrylate; linking agent) and a phosphine-ligand monomer [diphenyl-4-styryl-phosphine ( 3 ); i.e., CH2CH C6H4p-PPh2] in the RuCl2(PPh3)3-catalyzed living radical polymerization. The products were Ru-bearing. PMMA-armed star polymers with a microgel-core that consisted of a copolymer network of the linking agent and 3 . Upon the network formation, the phosphine ligands efficiently encapsulated RuCl2(PPh3)3, thus achieving a polymer catalyst directly from a polymerization catalyst. Colored dark brown-red, the star polymers exhibited UV-vis absorptions originating from the entrapped complex (3.1–7.4 × 10−5 mol Ru/g of polymer), the incorporation efficiency being close to 100% with respect to the original polymerization-catalyst. Detailed spectroscopic characterization showed the following: an absolute molecular weight of 1.7 × 105 to 1.7 × 106, an arm number of 11–92 arms/polymer, and a radius of gyration of 8–19 nm (in DMF). Direct observation of the individual star molecules in solid state was achieved by transmission electron microscopy (unstained; 2–3 nm dark dots for the core) and atomic force microscopy (semi-circular images). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4966–4980, 2006  相似文献   

15.
New segmented aromatic poly(ether sulfone)-amide and poly(ether sulfone)-imide copolymers were synthesized by the chain extension of α,w-diamine-terminated poly(ether sulfone) oligomer with both aromatic dicarboxylic acid chlorides and tetracarboxylic dianhydrides, respectively. Crystallization of the poly(ether sulfone)unit was suppressed by the introduction of amide or imide linkage along the polymer backbone, giving amorphous copolymers that were +eadily soluble in various organic solvents. The copolymers had somewhat higher glass transition temperatures than the parent poly(ether sulfone). They afforded transparent and tough films by solution casting. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
Hydroxy‐terminated telechelic poly(vinyl ether)s with pendant oxyethylene chains were synthesized by the reaction of the CH3CH(OCOCH3)? O[CH2]4O? CH(OCOCH3)CH3/Et1.5AlCl1.5/THF‐based bifunctional living cationic polymers of 2‐methoxyethyl vinyl ether (MOVE), 2‐ethoxyethyl vinyl ether (EOVE), and 2‐(2‐methoxyethoxy)ethyl vinyl ether (MOEOVE) with water and the subsequent reduction of the aldehyde polymer terminals with NaBH4. The obtained poly(vinyl ether) polyols were reacted with an equimolar amount of toluene diisocyanates [a mixture of 2,4‐ (80%) and 2,6‐ (20%) isomers] to give water‐soluble polyurethanes. The aqueous solutions of these polyurethanes caused thermally induced precipitation at a particular temperature depending on the sort of the thermosensitive poly(vinyl ether) segments containing oxyethylene side chains. These polyurethanes also function as polymeric surfactants, lowered the surface tension of their aqueous solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1641–1648, 2010  相似文献   

17.
1‐Benzocyclobutenyl vinyl ether (1) was easily prepared by the elimination reaction of hydrogen bromide from 1‐benzocyclobutenyl 1‐bromoethyl ether obtained by 1‐bromobenzocyclobutene and ethylene glycol via two steps in a good yield. Cationic polymerizations of 1 was carried out at −78°C for 2 h in toluene in the presence of BF3OEt2 as an initiator to give quantitatively the corresponding polymers (2) as white solids. As a model reaction of the polymer reaction of 2 with dienophiles, the Diels–Alder reactions of 1‐methoxybenzocyclobutene with maleic anhydride (MA) in toluene at 100–140°C for 3 h were carried out to obtain the corresponding Diels–Alder adduct quantitatively at 140°C. The polymer reactions of 2 with MA and N‐phenylmaleimide (MI) in toluene were carried out to yield the corresponding Diels–Alder adduct polymers in good yields. The degree of introduction of the dienophile could be controlled by temperature, and the unreacted benzocyclobutene moiety could further react with another benzocyclobutene moiety or dienophile. The properties (solubilities, Tg, and temperature of 10% weight loss) of the polymers obtained from the polymer reaction were quite different from those of 2. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 59–67, 1999  相似文献   

18.
The phthalide ring was examined as an activating group for nucleophilic aromatic substitution. The proposed mechanism by which activation occurs is through a ring opening of the phthalide ring to form a Meisenheimer‐like σ complex. 3,3‐Bis(4‐fluorophenyl)phthalide was synthesized and examined under different reaction conditions to determine its suitability for polymer formation. Semiempirical calculations at the PM3 level suggested that 3,3‐bis(4‐fluorophenyl)phthalide is only moderately activated, whereas 1H, 13C, and 19F NMR spectroscopy suggested that the monomer was not sufficiently activated for nucleophilic aromatic substitution. However, low‐molecular‐weight polymers (number‐average molecular weight < 7000 g/mol) were produced from bisphenol A, hydroquinone, and phenolphthalein. The polymers were characterized by gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, NMR spectroscopy, and differential scanning calorimetry. The polymers displayed relatively high glass‐transition temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3046–3054, 2002  相似文献   

19.
Glycidyl‐functional polymer nanoparticles [poly(glycidyl methacrylate) (PGMA)] were fabricated with microemulsion polymerization. The successful fabrication of PGMA nanoparticles was confirmed by Fourier transform infrared spectroscopy and transmission electron microscopy (TEM). A TEM image showed that the average diameter of the PGMA nanoparticles was approximately 10–28 nm and was fairly monodisperse. As the surfactant concentration increased, the average size of the nanoparticles decreased and approached an asymptotic value. A significant reduction of the nanoparticle size to the nanometer scale led to an enhanced number of surface functionalities, which played an important role in the curing reaction. The PGMA nanoparticles were cured with a low‐temperature curing agent, diethylene triamine, to produce ultrafine thermoset nanoparticles. The low‐temperature curing process was performed below the glass‐transition temperature of PGMA to prevent the coagulation and deformation of the nanoparticles. A TEM image indicated that the cured PGMA nanoparticles did not exhibit interparticle aggregation and morphological transformation during curing. The average size of the cured PGMA nanoparticles was consistent with that of the pristine PGMA nanoparticles © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2258–2265, 2005  相似文献   

20.
Several novel mesogenic spiro-orthoester monomers such as 1,6,10-trioxaspiro[4,5]decanes 4 , containing biphenyl mesogens at the C-8 positions of the five- and six-membered spirocyclic ring, through the alkylene spacers of different lengths were prepared by condensation reaction of the corresponding biphenyl mesogenic 1,3-propanediol 3 with 2,2-diethoxytetrahydrofuran, with 50–75% yields. Through cationic double ring-opening polymerization, carried out with boron trifluoride etherate as an initiator (5 mol % vs. monomer) in bulk at 150°C, spiro-orthoester monomers 4 afforded a novel class of side-chain thermotropic LC polymers with a poly(ether ester) as the main chain 8 . The liquid-crystalline properties of the spiro-orthoester monomers and the resulting polymers were examined by differential scanning calorimetry and optical polarized microscopy. Biphase separation was observed in the side-chain liquid-crystalline poly(ether ester)s upon annealing in the broad isotropic region. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2439–2455, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号