首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
In this article, an efficient method was developed to screen, isolate and identify the major radical scavengers in the leaves of Olea europaea L. by DPPH‐HPLC‐DAD, HSCCC and NMR. The method of DPPH‐HPLC‐DAD was used to screen the major radical scavengers. It was found that three major constituents (A, B, C) in the extract of the leaves of O. europaea L. possessed potential antioxidant activities. In order to identify the chemical structures of those compounds, the HSCCC method with a two‐phase solvent system composed of petroleum ether–ethyl acetate–water at an optimized volume ratio of 6:600:700 (v/v/v) together with column chromatography was developed to isolate and purify the active compounds. Pure compounds A (225 mg), B (10 mg) and C (12 mg) with purities 92.6, 95.1 and 96.4%, respectively, were obtained from the crude sample (500 mg). Their structures were identified as oleuropein (A), luteolin‐7‐O‐glucoside (B) and verbascoside (C) by 1H‐NMR and 13C‐NMR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
An efficient and simple method to isolate and purify highly polar antioxidants from the antioxidant active site of Chirita longgangensishas been established. Firstly, the antioxidant active site was enriched with D101 macroporous resin, and then high-speed counter-current chromatography (HSCCC) was used with the two-phase solvent system ethyl acetate–n-butanol–methanol–water (5:0.1:0.5:4.5, v/v) to obtain four antioxidants in one step. They were identified as plantainoside D (28.4 mg), plantainoside B (9.5 mg), calcedarioside B (18.1 mg) and calcedarioside A (16.7 mg) by analysis of electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectra. The purities were all above 97 % as determined by HPLC. The inhibiting effects of the crude extracts, enriched fraction and the obtained compounds on superoxide anion radical, hydroxyl radical and hydrogen peroxide were determined by different chemiluminescence (CL) systems. The result shows that all of them have good antioxidant activity. However, the sequence of antioxidant abilities among compounds I–IV was different when assayed by different CL systems (superoxide anion radical, hydroxyl radical, and hydrogen peroxide). This is the first report on preparative isolation and purification of antioxidants from C. longgangensis by HSCCC combined with macroporous resin and their inhibition of free radical-induced luminol chemiluminescence.  相似文献   

3.
High-speed counter-current chromatography (HSCCC) was successfully used for the separation of abietane-type diterpenoids from the medicinal plant C. kaichianum, which were not separated in our previous study using preparative HPLC. The HSCCC separation employed the lower phases of n-hexane–ethyl acetate–methanol–water (HEMW) 4:5:4:5 and HEMW 4:5:5:4 as the mobile phase for stepwise elution while the upper phase of HEMW 4:5:4:5 was used as the stationary phase. HSCCC separation yielded 90.5 mg of compound 1(kaichianone A), 137.7 mg of compound 2 (kaichianone B), 125.0 mg of compound 3 (teuvincenone E), and 227.6 mg of compound 4 (taxusabietane A) with purities of 95.3%, 97.2%, 97.8%, and 98.6%, respectively, as determined by HPLC. Compounds 12 are two new abietane-type diterpenoids while Compounds 34 are known abietane-type diterpenoids, analyzed by ESIMS and NMR data. The results demonstrated that HSCCC can be an excellent alternative for other separation methods. The two new compounds showed significant cytotoxicity against ileocecal carcinoma HCT-8 and breast adenocarcinoma MCF-7 cells.  相似文献   

4.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

5.
Teucrium chamaedrys L. is an aromatic and medicinal plant used as traditional medicine. Aerial parts of the plant material were dried and extracted with hexane–dichloromethane (extract 1), ethyl acetate–dichloromethane (extract 2) and methanol–dichloromethane (extract 3) in a ratio of 1:1 at rt successively. The solvents were evaporated to give crude extracts. Extract 1 was suspended in water at 60°C then partitioned successively with hexane and ethyl acetate to give hexane and ethyl acetate portions. After the column chromatography (silica gel) of ethyl acetate extract, one new and four known compounds were isolated. The new compound was named as 1(12S,18R)-15,16-epoxy-2β,6β-dihydroxy-neo-cleroda-13(16),14-dien-20,l2-olide-l8,l9-hemiacetal (teuchamaedryn D) (4). The known compounds were teucrin A (1), dihydroteugin (2), teucroxide (3), syspirensin A (5). The chromatographic methods were also applied for extract 3 to isolate verbascoside (6) and teucrioside (7). The structure of isolated compounds was elucidated by spectroscopic methods including LC-TOF/MS, 1D NMR and 2D NMR.  相似文献   

6.
In this study, the bioactive component harpagoside and angroside C in the root of Scrophularia ningpoensis Hemsley was simultaneously separated by high‐speed counter‐current chromatography (HSCCC). A two‐phase solvent system containing chloroform/n‐butanol/methanol/water (4:1:3:2, v/v/v/v) was selected following consideration of the partition coefficient of the target compound. The crude extract (200 mg) was loaded onto a 280‐mL HSCCC column and yielded 22 mg harpagoside and 31 mg angroside C with the purity of higher than 98 and 98.5%, respectively. It is feasible to isolate active compounds harpagoside and angroside C from S. ningpoensis using HSCCC.  相似文献   

7.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

8.
Traditional bioassay-guided investigation of bioactive compounds from natural products comprises critical steps, such as extraction, repeated column separation, and activity assay. Thus, the development of facile, rapid, and efficient technology is critically important. Here, a HepG2 cell-based extraction method was first developed to rapidly screen potential antitumor compounds from the seeds ofCassia obtusifolia. Then, an online extraction and enrichment–high-speed counter-current chromatography (HSCCC) strategy was fabricated to facilely and efficiently isolate target antitumor compounds, which included direct extraction from solid C. obtusifolia, removal of polar interferences, enrichment of target compounds, and preparative isolation by HSCCC using flow rate stepwise increasing mode. After further purification by Sephadex LH-20 column, five antitumor anthraquinones, aurantio-obtusin, 1-desmethylaurantio-obtusin, chryso-obtusin, obtusin, and questin, were obtained for structural characterization and bioassay verification. The results may not only provide new perspectives for facile and rapid investigation of bioactive compounds from complex natural products, but also offer a scientific basis for the potential applications of C. obtusifolia.  相似文献   

9.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

10.
Sixteen compounds were isolated from a Thai medicinal plant, Colubrina asiatica. The isolated compounds were elucidated on the basis of spectroscopic methods (IR, 1D and 2D NMR) as six triterpene acids (16), five steroids (711), one benzoic acid derivative (12), two peptides (13 and 14), one sesquiterpenoid (15) and one jujubogenin (16). Compounds 3 and 10 showed antimalarial activity against Plasmodium falciparum. Compound 5 showed antimycobacterial activity. Moreover, compounds 3, 5, 6, 10 and 14 exhibited weak cytotoxicity against cancer cell lines. Compounds 115 have been isolated for the first time from this plant.  相似文献   

11.
Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal‐phase thin‐layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high‐speed counter‐current chromatography (HSCCC) with a solvent system composed of n‐hexane–ethyl acetate–methanol–water–acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high‐performance liquid chromatography (HPLC) and their structures were identified by 1H nuclear magnetic resonance (NMR) and 13C NMR analysis.  相似文献   

12.
Six new substituted diphenyltin(IV) O,O′-alkylene dithiophosphates, (C6H5)2Sn(X)S(S) POGO [G = —CH2C(CH3)2CH2—, X = Cl (1), SCN (3), ClO4 (5); G = —CH2C (C4H9)(C2H5)CH2—, X = Cl (2), SCN (4), ClO4 (6)], were synthesized by the reaction of the corresponding ammonium salts of the O,O’-alkylene dithiophosphates with an appropriate organotin(IV) chloride. The compounds were characterized on the basis of elemental and spectral analyses (ESI mass spectrometry, IR, 1H, 13C, 31P, and 119Sn NMR). The presence of a four-coordinated Sn atom and monodentate O,O’-alkylene dithiophosphate moiety in compounds 1–4 as well as bidentate O,O’-alkylene dithiophosphate unit in compounds 5,6 is established.  相似文献   

13.
The phytochemical investigation of the whole plant of Polygonatum multiflorum resulted in the isolation of two new steroidal glycosides, polmultoside A (4) and polmultoside B (5), along with three known glycosides protobioside (1), protodeltonin (2) and huangjiangsu A (3). The structures of the isolated compounds have been elucidated by extensive 1D (1H, 13C) and 2D (COSY, HSQC, HMBC) NMR spectral data analysis, as well as high-resolution mass determinations.  相似文献   

14.
The objective of this study was to determine whether endophytic fungi, isolated from Kadsura angustifolia produce nigranoic acid and its highly oxygenated derivatives. From the 426 endophytic fungi screened, Trichoderma harzianum SWUKD3.1610 was detected to have a component with the same TLC R f value and HPLC retention time as authentic nigranoic acid. This component was further confirmed as nigranoic acid by investigating the chemical composition of the fungal extracts. Besides (1), one new triterpenoid, 7β- schinalactone C (2), and two known minor compounds were isolated and characterized by HRESIMS, 1D and 2D NMR spectroscopic methods. Our study indicates that endophytic fungus may play an important role in increasing the quality of the crude drugs from Chinese medicinal plant K. angustifolia. This study is the first to isolate, characterize, and identify schitriterpenes-producing Trichoderma spp.  相似文献   

15.
A novel sesquiterpenoid, subamol ((3-methoxy-5H-9,10-dihydroxybenzo[3,4]cyclohepta[1,2-f])inden-7-yl)methanol)) (1), along with six compounds, including one ionone: (+)-abscisic acid (2); and five benzenoids: syringaldehyde (3), trans-coumaric acid (4), cis-coumaric acid (5), vanillic acid (6), and p-hydroxybenzoic acid (7), were isolated from the leaves of Cinnamomum subavenium Miq (Lauraceae). These compounds were identified and characterized by physical and spectral evidence.  相似文献   

16.
A new natural product, iso-α-cyclopiazonic acid (1), together with its isomer α-cyclopiazonic acid (2); three mycotoxins: aflatoxin B1 (AFB1) (3), aflatoxin Q1 (AFQ1) (4), and O-methylsterigmatocystin (OMST) (5); two diketopiperazine alkaloids: ditryptophenaline (6) and 3-[(1H-indol-3-yl)methyl]-6-benzylpiperazine-2,5-dione (7), were isolated from the marine-derived fungus Aspergillus flavus. Their structures were determined by analysis of spectroscopic data. The cytotoxicities of compounds 1 and 2 were studied using HL-60, MOLT-4, A-549, and BEL-7402 cell lines.  相似文献   

17.
Ptychopetalum olacoides is a folk medicinal plant for health care in market, especially in Brazil. Fourteen known compounds were isolated from P. olacoides and their chemical structures were elucidated by extensive spectroscopic data, including 1D NMR, 2D NMR, UV, IR and HR-ESI-MS. The 14 known compounds were identified as N-trans-feruloyl-3,5-dihydroxyindolin-2-one (1), magnoflorine (2), menisperine (3), 4-coumaroylserotonin (4), moschamine (5), luteolin (6), 4′-methoxyluteolin (7), 3-methoxyluteolin (8), 3, 7-dimethoxyluteolin (9), caffeic acid (10), ferulic acid (11), vanillic acid (12), syringic acid (13) and ginsenoside Re (14). To our knowledge, compounds (16, 1314) were isolated from the plant for the first time. Additionally, quantitative analysis results indicated that calibration equations of compounds (13, 6, 9, 1113) exhibited good linear regressions within the test ranges (R2 ≥ 0.9990) and magnoflorine and menisperine were the major constituents in the barks of P. olacoides. The contents of magnoflorine and menisperine accounted for 75.96% of all analytes. However, the content of phenolic components was smaller and the highest content was no more than 1.04 mg/g. Collectively, these results suggested that alkaloids are the dominant substances in P. olacoides, which can make a difference for the quality control and further use of P. olacoides.  相似文献   

18.
A new phthalide derivative, xylarphthalide A (1), along with two known compounds (-)-5-carboxylmellein (2) and (-)-5-methylmellein (3), were isolated from the endophytic fungus Xylaria sp. GDG-102 cultured from the Chinese medicinal plant Sophora tonkinensis. Their structures were identified by MS and NMR experiments, and the absolute configuration of 1 was further confirmed by single-crystal X-ray diffraction analysis. Compound 13 showed antibacterial activities against Bacillus megaterium, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Shigella dysenteriae with MIC values of 12.5–25 μg/mL.  相似文献   

19.
Preparative high‐speed counter‐current chromatography (HSCCC) was successfully applied to the isolation and purification of three stilbene oligomers from Vitis chunganeniss using stepwise elution with a pair of two‐phase solvent systems composed of n‐hexane–ethyl acetate–methanol–water at (2:5:2:5, v/v) and (1:2:1:2, v/v). The preparative HSCCC separation was performed on 800 mg of crude sample yielding hopeaphenol (21.1 mg), amurensin G (37.2 mg) and vitisin A (95.6 mg) in a one‐step separation, with purities over 95% as determined by HPLC. The structures of these three compounds were identified by MS, 1H NMR and 13C NMR. In addition, their antioxidant activities were screened by DPPH assay, where vitisin A showed strong antioxidant activity. Further EPR experiments with spin‐trapping technique demonstrated that vitisin A is a potent and selective singlet oxygen quencher, which may be used in singlet oxygen‐mediated diseases as a pharmacological agent.  相似文献   

20.
High-speed counter-current chromatography (HSCCC) was applied to isolate and purify bioactive compounds in the essential oil of the rhizomes of Curcuma wenyujin. Two sesquiterpenes germacrone and curdione were successfully isolated and purified using two-phase solvent system composed of petroleum ether-ethanol-diethyl ether-water (5/4/0.5/1, v/v) in tail to head elution mode. 62 mg of germacrone and 93 mg of curdione were obtained from 658 mg of the essential oil each at over 95% purity. Their structures were identified by 1H NMR and EI MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号