首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

2.
Letq be a regular quadratic form on a vector space (V,F) and letf be the bilinear form associated withq. Then, \(\dot V: = \{ z \in V|q(z) \ne 0\} \) is the set of non-singular vectors ofV, and forx, y \(\dot V\) , ?(x, y) ?f(x, y) 2/(q(x) · q(y)) is theq-measure of (x, y), where ?(x,y)=0 means thatx, y are orthogonal. For an arbitrary mapping \(\sigma :\dot V \to \dot V\) we consider the functional equations $$\begin{gathered} (I)\sphericalangle (x,y) = 0 \Leftrightarrow \sphericalangle (x^\sigma ,y^\sigma ) = 0\forall x,y \in \dot V, \hfill \\ (II)\sphericalangle (x,y) = \sphericalangle (x^\sigma ,y^\sigma )\forall x,y \in \dot V, \hfill \\ (III)f(x,y)^2 = f(x^\sigma ,y^\sigma )^2 \forall x,y \in \dot V, \hfill \\ \end{gathered} $$ and we state conditions on (V,F,q) such thatσ is induced by a mapping of a well-known type. In case of dimVN?{0, 1, 2} ∧ ∣F∣ > 3, each of the assumptions (I), (II), (III) implies that there exist aρ-linear injectionξ :VV and a fixed λ ∈F?{0} such thatF x σ =F x ξ ?x \(\dot V\) andf(x ξ,y ξ)=λ · (f(x, y))ρ ?x, yV. Moreover, (II) implies ρ =id F q(x ξ) = λ ·q(x) ?x \(\dot V\) , and (III) implies ρ=id F ∧ λ ∈ {1,?1} ∧x σ ∈ {x ξ, ?x ξ} ?x \(\dot V\) . Other results obtained in this paper include the cases dimV = 2 resp. dimV ?N resp. ∣F∣ = 3.  相似文献   

3.
For the hypersurface Γ=(y,γ(y)), the singular integral operator along Γ is defined by. $$Tf(x,x_n ) = P.V.\int_{\mathbb{R}^n } {, f(x - y,x_n ) - } \gamma (y))_{\left| y \right|^{n - 1} }^{\Omega (v)} dy$$ where Σ is homogeneous of order 0, $ \int_{\Sigma _{n \lambda } } {\Omega (y')dy'} = 0 $ . For a certain class of hypersurfaces, T is shown to be bounded on Lp(Rn) provided Ω∈L α 1 n?2),P>1.  相似文献   

4.
Suppose thatx(t) ∈ C [a,b (n)] and has n zeros at the pointsa and b. It is shown that if x(n)(t) preserves sign on [a, b], then $$\left| {x\left( t \right)} \right| \geqslant \frac{{p_0 }}{{n - 1}}\mathop {\left[ {\mathop {\sup }\limits_{\tau \in \left( {a, b} \right)} \frac{{\left| {x\left( \tau \right)} \right|}}{{\left( {\tau - a} \right)^{p - 1} \left( {b - \tau } \right)^{q - 1} }}} \right]}\limits_{\left( {a< t< b} \right),} \left( {t - a} \right)^p \left( {b - t} \right)^q $$ where p and q are the multiplicities of the zeros of x(t) ata and b, respectively, and po=min{p,q}. Two-sided estimates of the Green's function for a two-point interpolation problem for the operator Lx ≡ x(n) are established in the proof. As an application, new conditions for the solvability of de la Vallée Poussin's two-point boundary problems are obtained.  相似文献   

5.
Let N denote the Hardy-Littlewood maximal operator for the familyR of one parameter rectangles. In this paper, we obtain that for 1 w p (lr) to L W P (lr) if and only if w ∈ AP(R); for 1≤p<∞, N is bounded from L W P (lr) to weak L W P (lr) if and only if W ∈ AP(R). Here we say W∈Ap (1), if $$\begin{gathered} \mathop {sup}\limits_{R \in R} \left( {\tfrac{1}{{|R|}}\smallint _r wdx} \right)\left( {\tfrac{1}{{|R|}}\smallint _R w^{ - 1/(p - 1)} dx} \right)^{p - 1}< \infty ,1< p< \infty , \hfill \\ (Nw)(x) \leqslant Cw(x)a.e.,p = 1 \hfill \\ \end{gathered} $$ ,  相似文献   

6.
On the multidimensional classW 0 r H ω (n) of continuous periodic functionsF with therth derivativeD r F from $$H_\omega ^{(n)} = \left\{ {f \in C| |f(x) - f(y)| \leqslant \sum\limits_{i = 1}^n {\omega _i } (|x_i - y_i |)\forall x, y \in \mathbb{R}^n } \right\}$$ (where the ω i (x i ) are the convex moduli of continuity) and zero mean with respect to each variable, we obtain the exact value of $$M_r (\omega ) = \mathop {\sup }\limits_{F \in W_0^r H_\omega ^{(n)} } \left\| F \right\|c$$ .  相似文献   

7.
We consider the weighted space W 1 (2) (?,q) of Sobolev type $$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$ and the equation $$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$ Here f ε L 1(?) and 0 ? qL 1 loc (?). We prove the following:
  1. The problems of embedding W 1 (2) (?q) ? L 1(?) and of correct solvability of (1) in L 1(?) are equivalent
  2. an embedding W 1 (2) (?,q) ? L 1(?) exists if and only if $$\exists a > 0:\mathop {\inf }\limits_{x \in R} \int_{x - a}^{x + a} {q(t)dt > 0} $$
  相似文献   

8.
Let X, Y be two linear spaces over the field ? of rationals and let D ≠ ? be a (?—convex subset of X. We show that every function ?: D → Y satisfying the functional equation $${\mathop\sum^{n+1}\limits_{j=0}}(-1)^{n+1-j}\Bigg(^{n+1}_{j}\Bigg)f\Bigg((1-{j\over {n+1}})x+{j\over{n+1}}y\Bigg)=0,\ \ \ x,y\in\ D,$$ admits an extension to a function F: X → Y of the form $$F(x)=A^o+A^1(x)+\cdot\cdot\cdot+A^n(x),\ \ \ x\in\ X,$$ where A o ∈ Y, Ak(x) ? Ak(x,…,x), x ∈ X, and the maps A k: X k → Y are k—additive and symmetric, k ∈ {1,…, n}. Uniqueness of the extension is also discussed.  相似文献   

9.
The integral equation $$\int_{\left| y \right| \leqslant 1} {\frac{{F(y)}}{{\left| {x - y} \right|^\lambda }}dy = G(x)} $$ x,y ∈ E2, with 0 < λ < 2 is studied. Uniqueness for integrable solutions F is established under the assumption that G is integrable. Existence of an integrable solution F is then obtained under the further assumption that G ∈ C2, with an explicit solution formula being given for F in terms of integral operators acting on derivatives of G.  相似文献   

10.
В РАБОтЕ ДОкАжАНО, ЧтО limk a *f(x)=f(x) пОЧтИ ВсУДУ, гДЕk a(t)=a?n k(a?1t), t?Rn, Для Дль ДОВОльНО шИРОкОг О клАссА ФУНкцИИk(t). ДАНы УслОВИь, пРИ кОтО Рых пОлУЧЕННыИ РЕжУл ьтАт РАспРОстРАНьЕтсь НА ФУНкцИУ $$k(x,y) = \gamma \frac{1}{{1 + |x|^\alpha }} \cdot \frac{1}{{1 + |y|^\beta }},$$ гДЕ α, β>1, А γ — НОРМИРУУЩ ИИ МНОжИтЕль тАкОИ, Чт О∫∫k(x, y) dx dy=1.  相似文献   

11.
Our purpose is to give necessary and sufficient conditions for continuity, on Besov spaces \(\dot B_p^{s,q} \) , of singular integral operators whose kernels satisfy: $$|\partial _x^\alpha K(x, y)| \leqslant C_\alpha |x - y|^{ - n - |\alpha |} for|\alpha | \leqslant m,$$ where m ∈ ? and 0 < s < m. The criterion is compared to the M.Meyer theorem [11] where 0 p s,q spaces for s?1. For 0 p s,p space is characterized by the localization and by Besov-capacity. In particular we show that the BMO 1 s,1 space is characterized by generalized Carleson conditions.  相似文献   

12.
In this paper we establish existence of solutions of singular boundary value problem ?(p(x)y (x))=q(x)f(x,y,py′) for 0<xb and $\lim_{x\rightarrow0^{+}}p(x)y^{\prime}(x)=0$ , α 1 y(b)+β 1 p(b)y (b)=γ 1 with p(0)=0 and q(x) is allowed to have integrable discontinuity at x=0. So the problem may be doubly singular. Here we consider $\lim_{x\rightarrow0^{+}}\frac{q(x)}{p'(x)}\neq0$ therefore $\lim_{x\rightarrow0^{+}}p(x)y'(x)=0$ does not imply y′(0)=0 unless $\lim_{x\rightarrow0^{+}}f(x,y(x),p(x)y'(x))=0$ .  相似文献   

13.
For any fixed finite interval [a, b] on the real line, an arbitrary natural numberr and σ>0, we describe the extremal function to the problem $\left\| {f^{(k)} } \right\|L_p \left[ {a,b} \right]^{ \to \sup } \left( {1 \leqslant k \leqslant r - 1, 1 \leqslant p< \infty } \right)$ over all functionsfW r such that |f (r)(x)| ≤σ, |f(x)|≤1 on (?∞, ∞). Similarly, we solve the problem, raised by Paul Erdös, of characterizing the trigonometric polynomial of fixed uniform norm whose graph has maximal arc length over [a, b].  相似文献   

14.
If γ(x)=x+iA(x),tan ?1‖A′‖<ω<π/2,S ω 0 ={z∈C}| |argz|<ω, or, |arg(-z)|<ω} We have proved that if φ is a holomorphic function in S ω 0 and \(\left| {\varphi (z)} \right| \leqslant \frac{C}{{\left| z \right|}}\) , denotingT f (z)= ∫?(z-ζ)f(ζ)dζ, ?fC 0(γ), ?z∈suppf, where Cc(γ) denotes the class of continuous functions with compact supports, then the following two conditions are equivalent:
  1. T can be extended to be a bounded operator on L2(γ);
  2. there exists a function ?1H (S ω 0 ) such that ?′1(z)=?(z)+?(-z), ?z∈S ω 0 ?z∈S w 0 .
  相似文献   

15.
The following limit theorem on Hamiltonian systems (resp. corresponding Riccati matrix equations) is shown: Given(N, N)-matrices,A, B, C andn ∈ {1,…, N} with the following properties:A and kemelB(x) are constant, rank(I, A, …, A n?1) B(x)≠N,B(x)C n(R), andB(x)(A T)j-1 C(x)∈C n-j(R) forj=1, …, n. Then \(\mathop {\lim }\limits_{x \to x_0 } \eta _1^T \left( x \right)V\left( x \right)U^{ - 1} \left( x \right)\eta _2 \left( x \right) = d_1^T \left( {x_0 } \right)U\left( {x_0 } \right)d_2 \) forx 0R, whenever the matricesU(x), V(x) are a conjoined basis of the differential systemU′=AU + BV, V′=CU?A TV, and whenever ηi(x)∈R N satisfy ηi(x 0)=U(x 0)d i ∈ imageU(x 0) η′i-Aηni(x) ∈ imageB(x),B(x)(η′i(x)-Aηi(x)) ∈C n-1 R fori=1,2.  相似文献   

16.
The paper gives some solvability conditions of the Dirichlet problem for the second order elliptic equation $$ - div(A(x)\nabla u) + (\bar b(x),\nabla u) - div(\bar c(x)u) + d(x)u = f(x) - divF(x),x \in Q,u|_{\partial Q} = u_0 \in L_2 (\partial Q) $$ in bounded domain Q ? R n (n ≥ 2) with smooth boundary ?QC 1. In particular, it is proved that if the homogeneous problem has only the trivial solution, then for any u 0L 2(?Q) and f, F from the corresponding functional spaces the solution of the non-homogeneous problem exists, from Gushchin’s space $ C_{n - 1} (\bar Q) $ and the following inequality is true: $$ \begin{gathered} \left\| u \right\|_{C_{n - 1} (\bar Q)}^2 + \mathop \smallint \limits_Q r\left| {\nabla u} \right|^2 dx \leqslant \hfill \\ \leqslant C\left( {\left\| {u_0 } \right\|_{L_2 (\partial Q)}^2 + \mathop \smallint \limits_Q r^3 (1 + |\ln r|)^{3/2} f^2 dx + \mathop \smallint \limits_Q r(1 + |\ln r|)^{3/2} |F|^2 dx} \right) \hfill \\ \end{gathered} $$ where r(x) is the distance from a point xQ to the boundary ?Q and the constant C does not depend on u 0, f and F.  相似文献   

17.
In this paper, we obtain bounds for the decay rate in the L r (? d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, $$u_t \left( {x,t} \right) = \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( {y,t} \right) - u\left( {x,t} \right)} \right|^{p - 2} \left( {u\left( {y,t} \right) - u\left( {x,t} \right)} \right)dy, x \in \mathbb{R}^d , t > 0.}$$ . We consider a kernel of the form K(x, y) = ψ(y?a(x)) + ψ(x?a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form $$T\left( u \right) = - \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( y \right) - u\left( x \right)} \right|^{p - 2} \left( {u\left( y \right) - u\left( x \right)} \right)dy, 1 \leqslant p < \infty .}$$ . The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ? d : $$\lambda _{1,p} \left( {\mathbb{R}^d } \right) = 2\left( {\int_{\mathbb{R}^d } {\psi \left( z \right)dz} } \right)\left| {\frac{1} {{\left| {\det A} \right|^{1/p} }} - 1} \right|^p .$$ Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.  相似文献   

18.
Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ?. The principal result of the paper is the following. Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ? [0, 1] with positive lower density at 0). Let A ? [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than ?(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ . Moreover, if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ , then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ? \ (?∞,0] : |z| < rA} restricted to A ∩ (0, rA) where $r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}$ (m(·) denotes the one-dimensional Lebesgue measure). This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.  相似文献   

19.
Let p, n ∈ ? with 2pn + 2, and let I a be a polyharmonic spline of order p on the grid ? × a? n which satisfies the interpolating conditions $I_{a}\left( j,am\right) =d_{j}\left( am\right) $ for j ∈ ?, m ∈ ? n where the functions d j : ? n → ? and the parameter a > 0 are given. Let $B_{s}\left( \mathbb{R}^{n}\right) $ be the set of all integrable functions f : ? n → ? such that the integral $$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi $$ is finite. The main result states that for given $\mathbb{\sigma}\geq0$ there exists a constant c>0 such that whenever $d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,$ j ∈ ?, satisfy $\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) $ for all j ∈ ? there exists a polyspline S : ? n+1 → ? of order p on strips such that $$ \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right) $$ for all y ∈ ? n , t ∈ ? and all 0 < a ≤ 1.  相似文献   

20.
For a triangulated 2-dimensional region in \(\mathbb{R}^2 \) , let S′m(Δ) be the vector space of all C′ functions F on Δ such that for any simplex σ∈Δ, F|σ is a polynomial of degree at most m. Let D′m(Δ) be the vector space consisting of all pairs (F1, F2) with Fi∈S′m(Δ), such that Σt(?Ft/?xt=0, i.e., the pair is divergence-free. Both S′m(Δ) and D′m(Δ) can be described in terms of chain complexes using the usual boundary map of homology, and these complexes can be related by an epimorphism. When Δ is 2-disk the epimorphism gives the explicit result that \(\mathbb{R}^2 \) . Bases for D′m(Δ) are derived from bases of S′ m+1 +1 (Δ) via the epimorphism in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号