首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Let ?1<α≤0 and let $$L_n^{(\alpha )} (x) = \frac{1}{{n!}}x^{ - \alpha } e^x \frac{{d^n }}{{dx^n }}(x^{\alpha + n} e^{ - x} )$$ be the generalizednth Laguerre polynomial,n=1,2,… Letx 1,x 2,…,x n andx*1,x*2,…,x* n?1 denote the roots ofL n (α) (x) andL n (α)′ (x) respectively and putx*0=0. In this paper we prove the following theorem: Ify 0,y 1,…,y n ?1 andy 1 ,…,y n are two systems of arbitrary real numbers, then there exists a unique polynomialP(x) of degree 2n?1 satisfying the conditions $$\begin{gathered} P\left( {x_k^* } \right) = y_k (k = 0,...,n - 1) \hfill \\ P'\left( {x_k } \right) = y_k^\prime (k = 1,...,n). \hfill \\ \end{gathered} $$ .  相似文献   

2.
It is proved that for any unimodular lattice Λ with homogeneous minimum L>0 and any set of real numbers α1, α2,..., αn there exists a point (y1, y2,..., yn) of Λ such that $$\Pi _{1 \leqslant i \leqslant n} |y_i + \alpha _i | \leqslant 2^{ - n/2_\gamma n} (1 + 3L^{8/(3n)/(\gamma ^{2/3} - 2L^{8/(3n)} )} )^{ - n/2} ,$$ where γn= nn/(n?1).  相似文献   

3.
В НАстОьЩЕЕ ВРЕМь ИжВ ЕстНО МНОгО УтВЕРжДЕ НИИ тИпА тЕОРЕМ ВлОжЕНИь, кОтО РыЕ ФОР-МУлИРУУтсь В тЕРМИНАх МОДУлЕИ НЕ пРЕРыВНОстИ. ДАННАь РАБОтА сОДЕРж Ит НЕскОлькО тЕОРЕМ В лОжЕНИь с УслОВИьМИ, ВыРАжЕННы МИ В тЕРМИНАх НАИлУЧшИх п РИБлИжЕНИИE n(?,p) ФУНкц ИИ ? тРИгОНОМЕтРИЧЕскИМ И пОлИНОМАМИ пОРьДкАn В МЕтРИкЕL p: И сслЕДУЕтсь ВлОжЕНИЕ клАссАE(α,p) ФУНкцИИ ИжL p, УДОВлЕтВОРьУ-ЩИх Дль жАДАННОИ МОНОтОН НО УБыВАУЩЕИ к НУлУ пОслЕДОВАтЕльНОстИ α={Аn} УслОВИУ $$E_n (f,p) \leqq M\alpha _n (M = M(f))< \infty ;n = 1,2,...).$$ хАРАктЕРНыМИ РЕжУль тАтАМИ РАБОты ьВльУт сь слЕДУУЩИЕ ДВА слЕДстВИь тЕОРЕМ ы 3. слЕДстВИЕ 1. пУстьР≧1И Β>?1.ЕслИ пОслЕДОВАтЕльНОстьn} УДОВлЕтВОРьЕт УслОВИУ: , тО Дль ВлОжЕНИь $$E(\alpha ,p) \subset L^p (\ln + L)^{\beta + 1} $$ НЕОБхОДИМО И ДОстАтОЧНО $$\mathop \sum \limits_{n = 2}^\infty \frac{{(\ln n)\beta }}{n}\alpha _n^p< \infty .$$ слЕДстВИЕ 2.ЕслИ v>p≧1,Β≧0 И {Аn} УДОВлЕтВОРьЕт УслОВИУ (1),тО Дль ВлОжЕ НИь $$E(\alpha ,p) \subset L^\nu (\ln + L)^\beta $$ НЕОБхОДИМО И ДОстАтО ЧНО $$\mathop \sum \limits_{n = 2}^\infty n^{\nu /p - 2} (\ln + n)^\beta \alpha _n^\nu< \infty ,$$   相似文献   

4.
Given aself similar fractal K ? ? n of Hausdorff dimension α>n?2, andc 1>0, we give an easy and explicit construction, using the self similarity properties ofK, of a sequence of closed sets? h such that for every bounded open setΩ?? n and for everyf ∈ L2(Ω) the solutions to $$\left\{ \begin{gathered} - \Delta u_h = f in \Omega \backslash \varepsilon _h \hfill \\ u_h = 0 on \partial (\Omega \backslash \varepsilon _h ) \hfill \\ \end{gathered} \right.$$ converge to the solution of the relaxed Dirichlet boundary value problem $$\left\{ \begin{gathered} - \Delta u + uc_1 \mathcal{H}_{\left| K \right.}^\alpha = f in \Omega \hfill \\ u = 0 on \partial \Omega \hfill \\ \end{gathered} \right.$$ (H α denotes the restriction of the α-dimensional Hausdorff measure toK). The condition α>n?2 is strict.  相似文献   

5.
For the functional differential equationu (n) (t)=f(u)(t) we have established the sufficient conditions for solvability and unique solvability of the boundary value problems $$u^{(i)} (0) = c_i (i = 0,...,m - 1), \smallint _0^{ + \infty } |u^{(m)} (t)|^2 dt< + \infty $$ and $$\begin{gathered} u^{(i)} (0) = c_i (i = 0),...,m - 1, \hfill \\ \smallint _0^{ + \infty } t^{2j} |u^{(j)} (t)|^2 dt< + \infty (j = 0,...,m), \hfill \\ \end{gathered} $$ wheren≥2,m is the integer part of $\tfrac{n}{2}$ ,c i R, andf is the continuous operator acting from the space of (n?1)-times continuously differentiable functions given on an interval [0,+∞] into the space of locally Lebesgue integrable functions.  相似文献   

6.
For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2)coincides with the Delannoy number Dn=n k=0n k n+k k in combinatorics.We investigate congruences involving generalized central trinomial coefficients systematically.Here are some typical results:For each n=1,2,3,...,we have n-1k=0(2k+1)Tk(b,c)2(b2-4c)n-1-k≡0(mod n2)and in particular n2|n-1k=0(2k+1)D2k;if p is an odd prime then p-1k=0T2k≡-1p(mod p)and p-1k=0D2k≡2p(mod p),where(-)denotes the Legendre symbol.We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.  相似文献   

7.
Letx 1, …,x n be givenn distinct positive nodal points which generate the polynomial $$\omega _n (x) = \prod\limits_{i = 1}^n {(x - x_i )} .$$ Letx*1, …,x* n?1 be the roots of the derivativeω n (x) and putx 0=0. In this paper, the following theorem is proved: Ify 0, …,y n andy1, …,y n?1 are arbitrary real numbers, then there exists a unique polynomialP 2n?1(x) of degree 2n?1 having the following interpolation properties: $$P_{2n - 1} (x_j ) = y_j (j = 0,...,n),$$ , $$P_{2n - 1}^\prime (x_j^* ) = y_j^\prime (j = 1,...,n - 1).$$ . This result gives the theoretical completion of the original Pál type interpolation process, since it ensures uniqueness without assuming any additional condition.  相似文献   

8.
Let {b k (n)} n=0 be the Bell numbers of order k. It is proved that the sequence {b k (n)/n!} n=0 is log-concave and the sequence {b k (n)} n=0 is log-convex, or equivalently, the following inequalities hold for all n?0, $$1 \leqslant \frac{{b_k (n + 2)b_k (n)}}{{b_k (n + 1)^2 }} \leqslant \frac{{n + 2}}{{n + 1}}$$ . Let {α(n)} n=0 be a sequence of positive numbers with α(0)=1. We show that if {α(n)} n=0 is log-convex, then α(n)α(m)?α(n+m), ?n,m?0. On the other hand, if {α(n)/n!} n=0 is log-concave, then $$\alpha (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)\alpha (n)\alpha (m),{\text{ }}\forall n,m \geqslant 0$$ . In particular, we have the following inequalities for the Bell numbers $$b_k (n)b_k (m) \leqslant b_k (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)b_k (n)b_k (m),{\text{ }}\forall n,m \geqslant 0$$ . Then we apply these results to characterization theorems for CKS-space in white noise distribution theory.  相似文献   

9.
Let (n k ) k??1 be an increasing sequence of positive integers. Bobkov and G?tze proved that if the distribution of $$\label{distr}\frac{\cos 2\pi n_1 x + \cdots +\cos 2 \pi n_N x}{\sqrt{N}}\qquad\quad\quad\quad (1)$$ converges to a Gaussian distribution, then the value of the variance is bounded from above by 1/2 ? lim sup k/(2n k ). In particular it is impossible that for a sequence (n k ) k??1 with bounded gaps (i.e. n k+1 ? n k ?? c for some constant c) the distribution of (1) converges to a Gaussian distribution with variance ?? 2?=?1/2 or larger. In this paper we show that the situation is considerably different in the case of the law of the iterated logarithm. We prove the existence of an increasing sequence of positive integers satisfying $$n_{k+1} - n_k \leq 2$$ such that $$\limsup_{N \to \infty}\frac{\sum_{k=1}^N \cos 2 \pi n_k x}{\sqrt{2N \log \log N}} = +\infty \quad {a.e.}$$   相似文献   

10.
In a bounded simple connected region G ? ?3 we consider the equation $$L\left[ u \right]: = k\left( z \right)\left( {u_{xx} + u_{yy} } \right) + u_{zz} + d\left( {x,y,z} \right)u = f\left( {x,y,z} \right)$$ where k(z)? 0 whenever z ? 0.G is surrounded forz≥0 by a smooth surface Γ0 with S:=Γ0 ? {(x,y,z)|=0} and forz<0 by the characteristic \(\Gamma _2 :---(x^2 + y^2 )^{{\textstyle{1 \over 2}}} + \int\limits_z^0 {(---k(t))^{{\textstyle{1 \over 2}}} dt = 0} \) and a smooth surface Γ1 which intersect the planez=0 inS and where the outer normal n=(nx, ny, nz) fulfills \(k(z)(n_x^2 + n_y^2 ) + n_z^2 |_{\Gamma _1 } > 0\) . Under conditions on Γ1 and the coefficientsk(z), d(x,y,z) we prove the existence of weak solutions for the boundary value problemL[u]=f inG with \(u|_{\Gamma _0 \cup \Gamma _1 } = 0\) . The uniqueness of the classical solution for this problem was proved in [1].  相似文献   

11.
Chebyshev determined $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n + a_1 x^{n - 1} + \cdots + a_n |$$ as 21?n , which is attained when the polynomial is 21?n T n(x), whereT n(x) = cos(n arc cosx). Zolotarev's First Problem is to determine $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n - n\sigma x^{n - 1} + a_2 x^{n - 2} + \cdots + a_n |$$ as a function ofn and the parameter σ and to find the extremal polynomials. He solved this in 1878. Another discussion was given by Achieser in 1928, and another by Erdös and Szegö in 1942. The case when 0≤|σ|≤ tan2(π/2n) is quite simple, but that for |σ|> tan2(π/2n) is quite different and very complicated. We give two new versions of the proof and discuss the change in character of the solution. Both make use of the Equal Ripple Theorem.  相似文献   

12.
Remark on the estimation ofE n [x n+2m ]. Let be $$E_n [f]: = \mathop {\inf }\limits_{p \in P_n } \mathop {\sup }\limits_{x \in [ - 1, 1]} |f(x) - p(x)|$$ (P n : set of all polynomials of degreen). Riess-Johnson [4] proved (3) $$E_n [x^{n + 2m} ] = \frac{{n^{m - 1} }}{{2^{n + 2m - 1} (m - 1)!}}[1 + O(n^{ - 1} )],n even.$$ This degree of approximation is realized by expansion in Chebyshev polynomials and by interpolation at Chebyshev nodes. The purpose of this paper is to give a more precise estimation by constructing the polynomial of best approximation on a finite set. This construction is easily done and one obtains the result, that the termO(n ?1) in (3) may be replaced by 1/2(m ? 1) (3m + 2)n ?1 + O(n ?2).  相似文献   

13.
В статье доказываетс я Теорема.Какова бы ни была возрастающая последовательность натуральных чисел {H k } k = 1 c $$\mathop {\lim }\limits_{k \to \infty } \frac{{H_k }}{k} = + \infty$$ , существует функцияf∈L(0, 2π) такая, что для почт и всех x∈(0, 2π) можно найти возраст ающую последовательность номеров {nk(x)} k=1 ,удовлетворяющую усл овиям 1) $$n_k (x) \leqq H_k , k = 1,2, ...,$$ 2) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t} (x)} (x,f) = + \infty ,$$ 3) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t - 1} (x)} (x,f) = - \infty$$ .  相似文献   

14.
LetW(x) be a function that is nonnegative inR, positive on a set of positive measure, and such that all power moments ofW 2 (x) are finite. Let {p n (W 2;x)} 0 denote the sequence of orthonormal polynomials with respect to the weightW 2, and let {α n } 1 and {β n } 1 denote the coefficients in the recurrence relation $$xp_n (W^2 ,x) = \alpha _{n + 1} p_{n + 1} (W^2 ,x) + \beta _n p_n (W^2 ,x) + \alpha _n p_{n - 1} (W^2 ,x).$$ We obtain a sufficient condition, involving mean approximation ofW ?1 by reciprocals of polynomials, for $$\mathop {\lim }\limits_{n \to \infty } {{\alpha _n } \mathord{\left/ {\vphantom {{\alpha _n } {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }} = \tfrac{1}{2}and\mathop {\lim }\limits_{n \to \infty } {{\beta _n } \mathord{\left/ {\vphantom {{\beta _n } {c_{n + 1} }}} \right. \kern-\nulldelimiterspace} {c_{n + 1} }} = 0,$$ wherec n 1 is a certain increasing sequence of positive numbers. In particular, we obtain a sufficient condition for Freud's conjecture associated with weights onR.  相似文献   

15.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

16.
We establish a nontrivial estimate for a short trigonometric sum of the form Ω x ? y < nx e(α[n c ]), where u ≥ √2cx ?6A , A ≥ 1 is a fixed number, ? = ln x and c is a noninteger satisfying the conditions $$1 < c \leqslant \log _2 L - \log _2 \ln L^{6A} , \left\| c \right\| \geqslant \left( {2^{\left[ c \right] + 1} - 1} \right)\left( {A + 1} \right)L^{ - 1} \ln L.$$   相似文献   

17.
Let p, n ∈ ? with 2pn + 2, and let I a be a polyharmonic spline of order p on the grid ? × a? n which satisfies the interpolating conditions $I_{a}\left( j,am\right) =d_{j}\left( am\right) $ for j ∈ ?, m ∈ ? n where the functions d j : ? n → ? and the parameter a > 0 are given. Let $B_{s}\left( \mathbb{R}^{n}\right) $ be the set of all integrable functions f : ? n → ? such that the integral $$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi $$ is finite. The main result states that for given $\mathbb{\sigma}\geq0$ there exists a constant c>0 such that whenever $d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,$ j ∈ ?, satisfy $\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) $ for all j ∈ ? there exists a polyspline S : ? n+1 → ? of order p on strips such that $$ \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right) $$ for all y ∈ ? n , t ∈ ? and all 0 < a ≤ 1.  相似文献   

18.
We show that for nn? 4 the L-norm of weak solutions of the Navier-Stokes equations on ?n with generalized energy inequality decays like $\parallel u(t, \cdot )\parallel _\infty = O(t^{ - ({{n + 1)} \mathord{\left/ {\vphantom {{n + 1)} 2}} \right. \kern-0em} 2}} ),if(1 + | \cdot |)|u(0, \cdot )| \in L_1 $ and $$\int_{\mathbb{R}^n } {u(0,x)} dx = 0$$ . The same holds for strong solutions in all dimensions, if additionally u(0, ·) ε Lp p >n.  相似文献   

19.
We obtain conditions for the convergence in the spaces L p [0, 1], 1 ≤ p < ∞, of biorthogonal series of the form $$ f = \sum\limits_{n = 0}^\infty {(f,\psi _n )\phi _n } $$ in the system {? n } n≥0 of contractions and translations of a function ?. The proposed conditions are stated with regard to the fact that the functions belong to the space $ \mathfrak{L}^p $ of absolutely bundleconvergent Fourier-Haar series with norm $$ \left\| f \right\|_p^ * = \left| {f,\chi _0 } \right| + \sum\limits_{k = 0}^\infty {2^{k({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p})} } \left( {\sum\limits_{n = 2^k }^{2^{k + 1} - 1} {\left| {f,\chi _n } \right|^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where (f n ), n = 0, 1, ..., are the Fourier coefficients of a function f ? L p [0, 1] in the Haar system {χ n } n≥0. In particular, we present conditions for the system {? n } n≥0 of contractions and translations of a function ? to be a basis for the spaces L p [0, 1] and $ \mathfrak{L}^p $ .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号