首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在MM-200型摩擦磨损试验机上研究了金属氧化物填充聚四氟乙烯在干摩擦和水润滑条件下的摩擦磨损性能.结果表明:在水润滑下各复合材料的摩擦系数都较在干摩擦下的有不同程度地降低,而磨损不同程度地加剧;水润滑下金属氧化物填充使PTFE的摩擦系数增大,填充Al2O3、ZnO及CdO等均使PTFE的磨损率大幅增大,这是因为填料容易吸水,导致填料与基体脱粘,使材料表面的机械强度降低,从而使磨损率大幅增大.  相似文献   

2.
对比研究了?100~100 ℃范围内聚四氟乙烯(PTFE)及三氧化二铝/聚四氟乙烯(Al2O3/PTFE)复合材料的摩擦学性能. 研究结果表明,PTFE因为蠕变,在升温过程中摩擦系数逐步降低,磨损率逐步升高. 而引入Al2O3填料会显著影响PTFE的摩擦学行为,Al2O3/PTFE的摩擦系数普遍比PTFE高,而磨损率比PTFE低. 摩擦学机理表明,滑动过程中形成的摩擦膜是决定摩擦学行为的关键因素. 这对极端工况条件下高分子复合材料的设计具有重要的指导意义.   相似文献   

3.
作者以聚四氟乙烯(PTFE)为固体润滑剂填料对GM型齿轮润滑成膜膏进行了改进,并且研制出了两种新的成膜膏系列产品。经四球试验机、动静摩擦系数精密测定仪和SRV试验机评价的结果表明,添加PTFE的GM-2型成膜膏的承载能力和减磨性能都明显地比未添加的好;以PTFE为主要固体润滑剂填料的GM-3和MFC-1型两种润滑成膜膏也都具有良好的润滑性能,其中后者的性能与含PTFE的GM-2型成膜膏的接近。通过对摩擦轨迹的电子探针检测发现,PTFE在摩擦过程中于摩擦表面形成了转移膜,因而改善了润滑成膜膏的摩擦学性能。  相似文献   

4.
纳米PTFE粒子复合Ni-P化学镀层的摩擦学行为   总被引:5,自引:0,他引:5  
采用化学镀在Q235钢基材上制备了纳米和微米PTFE粒子的Ni-P/PTFE复合镀层.用球盘式摩擦磨损试验机研究了镀层摩擦系数与PTFE体积百分数的关系以及具有最小摩擦系数镀层的承载能力.结果表明:纳米和微米复合镀层均在PTFE的体积含量约26%时出现最佳的减摩效果,摩擦系数为0.11-0.15.纳米粒子复合镀层的摩擦系数与磨损量在较低载荷下与微米粒子复合镀层接近,但其承载能力远优于微米粒子复合镀层,两者临界载荷之比约为3.5.  相似文献   

5.
本文描述了一台专用的真空摩擦试验装置,并给出了真空度为10~(-3)托下,PTFE-花岗石、PTFE—镀铬铜和PTFE—钢球三种摩擦副材料的f-v实验曲线;给出了接触压力为不同数值时PTFE—花岗石的动、静摩擦系数,并比较了它们在大气和真空下的f—v曲线。试验结果表明,PTFE—花岗石的动、静摩擦系数之差是三种摩擦副中最低的,仅为0.02。而PTFE—镀铬铜的动摩擦系数最低(0.067),但其动、静摩擦系数之差最大。故选用PTF正-花岗石作为真空中低速、低负荷工作台导轨面材料有可能收到减小低速爬行的效果。  相似文献   

6.
采用挤出注塑加工成型法制备不同含量的新型注塑级杂萘联苯聚芳醚砜酮(m-PPESK)与聚四氟乙烯(PTFE)共混物,对共混物的力学性能及其摩擦磨损性能进行研究,并通过扫描电子显微镜观察其磨损表面形貌.结果表明,m-PPESK/PTFE共混物的拉伸强度、弯曲强度和非缺口冲击强度均随着PTFE含量的增加而降低,但在PTFE的质量分数低于15%时,m-PPESK/PTFE共混物能够保持较高的机械强度.PTFE的加入可以显著降低m-PPESK的摩擦系数和磨损率,在PTFE质量分数为25%时,摩擦系数和磨损率均降至最小值.m-PPESK/PTFE共混物的磨损机理主要为粘着磨损和磨粒磨损.  相似文献   

7.
针对川西平原地区实际降雨环境,开展了PTFE/Kevlar航空器关节轴承衬垫材料往复磨损试验,通过分析摩擦系数、磨痕损伤形貌以及磨损表面化学成分的演变规律,探究了雨水环境下PTFE/Kevlar编织材料的摩擦磨损特性.结果表明:雨水环境下PTFE/Kevlar轴承衬垫材料磨损损伤行为表现为PTFE纤维变形、破碎、转移以及Kevlar纤维变形和疲劳断裂.雨水环境下PTFE/Kevlar轴承衬垫材料的磨损过程可分为3个阶段:前期(N<1000)、中期(1000≤N<5000)和后期(N≥5000),分别是PTFE逐渐转移阶段、PTFE转移膜形成阶段以及转移膜破坏阶段.从磨损前期到中期,摩擦系数减小,最大磨痕宽度和最大磨痕深度增加,磨痕区域F元素含量增加、C元素含量减少;从磨损中期到后期,摩擦系数增加并波动,最大磨痕宽度和最大磨痕深度持续增加,磨痕区域F元素含量减小、C元素含量增加.结果表明雨水环境会促使转移膜快速剥落和破坏,因此,应尽量避免自润滑PTFE/Kevlar衬垫型关节轴承长时间在阴雨天气下使用.  相似文献   

8.
Al_2O_3+PTFE(+PPS)复合材料滑动摩擦磨损的研究   总被引:2,自引:1,他引:2  
作者采用冷压-烧结工艺研制了Al_2O_3+PTFE、PTFE+PPS和Al_2O_3+(PTFE+PPS)3类复合材料,并对这些材料的摩擦磨损行为及其磨损机理进行了研究。结果表明,适量Al_2O_3粒子的弥散可以明显提高复合材料的耐磨性,PTFE+PPS复合材料的耐磨性远比PTFE的好,摩擦系数几乎与PTFE的相同,是一种良好的减摩抗磨材料。复合材料的磨损过程主要受粘着、犁削和塑性流动机制的控制。  相似文献   

9.
对比考察了聚苯酯(Ekonol)和PAB纤维增强PTFE复合材料在干摩擦和液氮介质中的摩擦磨损性能,利用扫描电子显微镜观察分析在干摩擦和液氮条件下Ekonol/PAB纤维增强PTFE复合材料的磨损表面形貌及其磨损机理,同时还考察了温度对复合材料冲击韧性的影响.结果表明:在液氮条件下,PTFE的抗犁削能力增强,Ekonol/PAB/PTFE复合材料的磨损量明显比干摩擦下低,复合材料的摩擦系数比干摩擦下大,载荷对复合材料的磨损量影响较小,复合材料的摩擦系数和磨损量随着滑动速度增加基本保持不变,材料的磨损机理主要为轻微犁削和脆性断裂;而在干摩擦条件下,载荷对复合材料的磨损量影响显著,随着滑动速度增加,复合材料的摩擦系数先增后减,磨损量逐渐增大,材料的磨损机理主要以犁削、粘着磨损及疲劳磨损为主.在2种试验条件下复合材料的摩擦系数均随载荷增加而减小;低温时材料的冲击韧性约为常温时的1/2.  相似文献   

10.
γ射线辐照PTFE的摩擦磨损性能研究   总被引:2,自引:0,他引:2  
张立祥  黄文浩 《实验力学》2005,20(1):151-155
在干摩擦条件下,利用M200型环 -块磨损试验机对聚四氟乙稀在γ射线辐照后的摩擦磨损性能进行了实验研究,结果表明,在辐射剂量从 0增至 200KGy时,PTFE材料经γ辐照后,其耐磨性显著提高;至辐射剂量达 300KGy时,其磨损量降至最低,降幅达 94. 4%;其后,随辐射剂量的进一步增加,其磨损量未再有显著的变化。其耐磨效果与在PTFE基体中填充无机 "硬粒子"的效果相当,但与填充无机粒子相比,辐射PTFE对摩擦对偶面没有 "研磨 "损伤。辐照后其摩擦系数略有变化,当辐射剂量从 0增加到 80KGy时,摩擦系数从 0. 214增至 0. 220,但辐射剂量进一步增至 400KGy时,摩擦系数缓慢降至 0. 184。磨屑的显微分析表明,随着辐射剂量的增加,磨屑逐渐从粗长的片状变为细小的纤维状。辐照后其硬度有所增加。文章还讨论了PTFE辐照后的耐磨机理。  相似文献   

11.
电刷镀Ni-PTFE纳米复合镀层的摩擦特性研究   总被引:10,自引:3,他引:7  
利用电刷镀技术在A3钢基底上制备了Ni-PTFE纳米复合镀层;采用S-2700型扫描电子显微镜观察纳米复合镀层经抛光腐蚀后的表面形貌;采用HX-1000型显微硬度计测量复合镀层的显微硬度;采用MXTX S/X 20-0186型划痕试验仪测量纳米复合镀层的表面粗糙度和定载荷及变载荷作用下镀层的摩擦系数.结果表明:PTFE可以使复合镀层的组织致密,降低复合镀层的硬度和表面粗糙度;在室温、较小载荷及干摩擦条件下,PTFE可以降低复合镀层的摩擦系数(最低降至0.046);复合镀层和普通镀层的摩擦系数均随载荷的增加而增大;在较低载荷作用下,复合镀层的摩擦系数小于普通镀层的摩擦系数.  相似文献   

12.
通过γ射线辐照聚苯酯改性聚四氟乙烯(PTFE/POB)复合材料,利用红外光谱、X射线衍射、DSC等对辐照前后材料的化学组成、结晶结构等进行了表征,并与γ射线辐照纯PTFE材料作对比,考察了热稳定性能、拉伸性能和摩擦磨损性能. 结果表明:γ射线辐照并未造成PTFE/POB 材料的化学组成和热稳定性能的明显变化,但使得PTFE分子量降低,结晶度增大;相比纯的PTFE材料,POB的加入一定程度上提高了PTFE的抗辐照能力,延缓了PTFE分子量下降程度和再结晶化能力. 辐照对PTFE/POB材料的耐磨性能影响并不显著,但摩擦系数均有不同程度的降低,且随着辐照剂量的增大,呈现先增大后减小的变化趋势,这与辐照后PTFE的分子量、结晶度及带晶尺寸变化,以及POB自身的抗辐照能力等密切相关.   相似文献   

13.
以纳米Al2O3、纳米TiO2及聚四氟乙烯(PTFE)作为复合填料,利用热压成型方法分别制备了纳米Al2O3-PTFE及纳米TiO2-PTFE填充聚醚醚酮(PEEK)复合材料;采用销-盘式摩擦磨损试验机考察了纳米微粒对复合材料摩擦学性能的影响;采用扫描电子显微镜观察分析了复合材料磨损表面形貌.结果表明:纳米微粒和PTFE作为复合填料可以显著改善PEEK的摩擦学性能,其改善效果同纳米微粒的填充量相关;当纳米填料的质量分数相同时,PEEK/PTFE/nano-TiO02复合材料的摩擦磨损性能明显优于PEEK/PTFE/nano-Al2O3复合材料;含纳米Al2O3的复合材料磨损表面呈现严重塑性变形特征,且塑性变形程度随纳米微粒含量增加而增大,而含纳米TiO2的复合材料磨损表面塑性变形轻微.  相似文献   

14.
碳纳米管改性聚四氟乙烯复合材料的摩擦磨损性能研究   总被引:22,自引:5,他引:17  
评价了用不同含量碳纳米管(CNTs)改性聚四氟乙烯(PTFE)复合材料的力学性能,利用MM-200型摩擦磨损试验机研究了CNTs含量对PTFE复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面及磨屑形貌,并探讨其磨损机理.结果表明:CNTs能够提高PTFE复合材料的硬度和冲击强度,在本文研究范围内,当CNTs的质量分数为7%时,PTFE复合材料的力学性能最佳;CNTs能够增加PTFE复合材料的摩擦系数、降低其磨损量,当其质量分数为10%时,PTFE复合材料的耐磨损性能最佳.纤维状碳纳米管可以阻止PTFE带状结构的大面积破坏,以及在摩擦过程中于偶件表面能够形成转移膜并隔离复合材料与偶件的直接接触是其减摩耐磨作用的主要原因.  相似文献   

15.
对由ABS树脂(即PNA-聚芮烯腈,PB-聚丁二烯和PS-聚苯乙烯的共聚树脂)组分的不同组合共混而成的材料PAN/PS、PAN/PB、PS/PB和PAN/PB/PS进行了静摩擦系数μ_s、动摩擦系数μ_k和摩损率V_s的滑动试验研究。试验表明,当PB共混含量为10~20%时,μ_k和V_s有较大的降低,润滑性能大大改善。 另外,对于与PB或PTFE(聚四氟乙烯)共混的POM(聚甲醛)或PA(聚酰胺、尼龙6)来说,当PB含量为5~20%时,μ_k和V_s大大降低,且PB含量5%时共混材料的μ_k值始终低于为人熟知的PTFE共混材料。试验发现,通过与PB共混极大地改善了极限PV值,达到了与PTFE共混的同样水平。  相似文献   

16.
介绍了所研制的重载摩擦磨损试验机的工作原理及其性能特点 ,在摆动频率 5 .3min- 1 和摆角± 30°条件下测试了聚四氟乙烯 (PTFE)编织复合材料关节轴承承载力及摩擦的时间效应 ,在 135 MPa承载力下测试了轴承的磨损和温升以及摩擦系数随连续摆动时间变化的关系 ,并通过扫描电子显微镜观察分析了轴承失效机理 .结果表明 :该关节轴承承载力可达到 135 MPa,摩擦系数小且稳定 ;在摆动过程中 PTFE不断被挤出 ,使轴承自润滑功能下降 ,从而导致编织基体材料发生磨损 .  相似文献   

17.
用玄武三号栓-盘式摩擦磨损试验机研究了纯玻璃纤维织物以及辐照聚四氟乙烯(PTFE)粉末、MoS2粉末、纳米TiO2和纳米CaCO3填充改性玻璃纤维织物复合材料的摩擦磨损性能;采用扫描电子显微镜观察分析了其磨损表面形貌.结果表明,辐照PTFE粉末和纳米TiO2可以明显提高玻璃纤维织物复合材料的减摩抗磨性能,且辐照PTFE粉末的减摩抗磨效果明显优于纳米TiO2;当PTFE的质量分数为10%时,PTFE改性玻璃纤维织物复合材料的综合摩擦磨损性能最好.MoS2和纳米CaCO3则使得玻璃纤维织物复合材料的摩擦系数和磨损率明显增大,其中纳米CaCO3填充玻璃纤维织物的摩擦磨损性能最差。  相似文献   

18.
采用MM-200型摩擦磨损试验机考察了聚四氟乙烯(PTFE)和MoS2填充聚酰亚胺(PI)复合材料在干摩擦下与GCr15轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜和X射线能量色散谱仪分析了PI复合材料及其偶件磨损表面形貌和元素面分布.结果表明,PTFE和MoS2均可降低PI的摩擦系数,其中PI 30%MoS2复合材料的减摩性能最佳,其摩擦系数同纯PI的相比降低了约50%.除PI 10%PTFE 20%MoS2外,其它几种复合材料的抗磨性能均明显优于纯PI,其中PI 20%PTFE 10%MoS2复合材料的抗磨性能最佳,其磨损率比纯PI的低1个数量级.PI复合材料的摩擦磨损性能同其在偶件磨损表面形成的转移膜的性质密切相关,当转移膜厚度适当且分布较均匀时,PI复合材料的减摩抗磨性能良好.  相似文献   

19.
实现压缩机无油润滑的关键在于要有一种自润滑性好、机械强度高的密封材料。过去人们多用无机填料填充聚四氟乙烯(简称PTFE)作为这方面的材料,但是还未能获得满意的结果。本文叙述了采用具有良好的自润滑性、高温下尺寸稳定性以及良好的导热性的新颖的工程塑料——聚对羟基苯甲酸酯(商品名Ekonol)与少量石墨去共混改性欠耐磨、易蠕变的PTFE,获得一种叫做E_(35)的耐磨自润滑复合材料。它克服了PTFE固有的严重缺点,用作合成氨压缩机的无油润滑密封件,取得了良好的效果。  相似文献   

20.
应用阳极氧化和微弧氧化的方法分别制作了TC4(Ti-6Al-4V)表面氧化膜,分别在0.9% NaCl溶液和模拟人工体液中以PTFE盘作摩擦偶件,在圆平动盘销式摩擦磨损试验机进行摩擦电化学试验,获得了对应的摩擦系数,采用三电极体系得到摩擦电化学特性曲线.结果表明,静态时微弧氧化膜耐蚀性比阳极氧化膜提高了近2个数量级;与基体相比,TC4的阳极氧化膜的耐蚀性增强,摩擦系数降低,处理电压越高,摩擦系数越小;虽然TC4的微弧氧化膜的耐腐蚀性能均较阳极氧化膜有大幅度提高,但摩擦系数均较未处理的TC4的摩擦系数大,其中处理时间为20min的微弧氧化膜表现出良好的耐蚀和摩擦性能,通过对磨损试件的SEM形貌对比解释了微弧氧化膜摩擦系数较大的原因,这与膜层表面粗糙度和微孔孔径大小有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号