首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexes of the formula (N2H5)2M(C2O4)2·nH2O where M = Co, Ni, Cu and n = 3, 2, 1 respectively have been prepared and their spectral, magnetic and thermal properties investigated. The copper complex, (N2H5)2Cu(C2O4)2·H2O has a square planar geometry with no coordination of hydrazinium cations as confirmed by a single crystal X-ray study. Nickel and cobalt form octahedral complexes and X-ray powder patterns reveal that the complexes are not isomorphous.  相似文献   

2.
Rare homodinuclear Co (II) complex [Co2(L)NO3] ( 1 ) and helical centrosymmetric homotetranuclear Cu (II) complex [Cu4(L)2(H2O)2]·2ClO4 ( 2 ), have been synthesized by a newly explored bis (salamo)-like tetraoxime ligand (H3L) with Co (NO3)2·6H2O and Cu (ClO4)2·6H2O, respectively, and characterized by elemental analyses, IR, UV–Vis spectroscopy and single crystal X-ray crystallography. X-ray crystallographic studies indicate that the two Co (II) atoms (Co1 and Co2) in complex 1 have different N2O4 and N2O3 coordination spheres, and distorted octahedral (Co1) and slightly distorted triangular bipyramidal (Co2) geometries, while Cu (II) atoms in complex 2 have also two different N2O4 (Cu1) and N2O3 (Cu2) coordination environments, and complex 2 forms a helical centrosymmetric molecule. In addition, supramolecular interactions, Hirshfeld surfaces analyses, antibacterial and fluorescence properties were also investigated in detail.  相似文献   

3.
Reaction of a imidazole phenol ligand 4‐(imidazlo‐1‐yl)phenol (L) with 3d metal salts afforded four complexes, namely, [Ni(L)6] · (NO3)2 ( 1 ), [Cu(L)4(H2O)] · (NO3)2 · (H2O)5 ( 2 ), [Zn(L)4(H2O)] · (NO3)2 · (H2O) ( 3 ), and [Ag2(L)4] · SO4 ( 4 ). All complexes are composed of monomeric units with diverse coordination arrangements and corresponding anions. All the hydroxyl groups of monomeric cations are used as hydrogen‐bond donors to form O–H ··· O hydrogen bonds. However, the coordination habit of different metal ions produces various supramolecular structures. The NiII atom shows octahedral arrangement in 1 , featuring a 3D twofold inclined interpenetrated network through O–H ··· O hydrogen bond and π–π stacking interaction. The CuII atom of 2 displays square pyramidal environment. The O–H ··· O hydrogen bond from the [Cu(L)4(H2O)]2+ cation and lattice water molecule as well as π–π stacking produce one‐dimensional open channels. NO3 ions and lattice water molecules are located in the channels. 3 is a 3D supramolecular network, in which ZnII has a trigonal bipyramid arrangement. Two different rings intertwined with each other are observed. The AgI in 4 has linear and triangular coordination arrangements. The mononuclear units are assembled into a 1D chain by hydrogen bonding interaction from coordination units and SO42– anions.  相似文献   

4.
The thermal decomposition of the complexes M 2 I Cu(SO4)2 · 6 H2O and M2Ni(SO4)2 · · 6 H2O (MI=NH4, K, Rb, Tl) containing the complex cation MII(H2O)6 2+ (MIl = =Cu, Ni) was studied. The values of the experimental activation energyE obtained for the dehydration reactions of both complex cations were found to be influenced in different ways by the outer-sphere cations present. It was therefore concluded that the activation energy of the decomposition of Cu(H2O)6 2+ depends on the degree of tetragonal distortion of this cation, which increases with the ionic radius of cation MI. TheΔH values of the studied reactions depend less on the structures of the coordination polyhedra.  相似文献   

5.
The crystal of the N‐isopropyl‐iminodiacetic acid ( 1 ) consists of a 3D H‐bonded framework where the zwitterion (H2iPIDA±) is intra‐stabilized by one N+‐H···O interaction and both carboxyl are half‐protonated and involved in linear O‐H···O inter‐molecular bridges of 2.46 Å. The mixed‐ligand complexes [Cu(iPIDA)(H2?im)(H2O)]·3H2O ( 2 ) and [Cu(iPIDA)(H5?im)]n ( 3 ) have also been synthesized and studied by thermal, spectral, magnetic and X‐ray diffraction methods. Both complexes exhibit a square base pyramidal coordination, type 4+1. Compound 3 is the less steric hindered 'remote' isomer, with H5?im instead of H4?im.  相似文献   

6.
Summary: A novel coordination polymer[{Cu(en)2}(V10O28)]n · 2n[Cu(en)2(H2O)] · 2n(H3BO3) · 2n(H2O) was obtained by hydrothermal reaction. The compound crystallizes in the monoclinic crystal system, in the C2/c space group, with a = 26.490 (3) Å; b = 11.6558 (11) Å; c = 19.8426 (19) Å; β = 124.011 (1)°; V = 5078.6(8) Å3. The solid structure is formed by polymeric chains, [Cu(en)2(H2O)]2+ cations, and boric acid and water solvate molecules, stabilized through a multiple hydrogen bond network.  相似文献   

7.
In the title compound, [CuCl(C6H6N4)(H2O)][Cu(C4H5NO4)Cl]·H2O, the CuII atom in the cation is coordinated by one Cl ion, two N atoms of the 2,2′‐biimidazole ligand and one aqua ligand. Within the anion, the CuII atom is bonded to one Cl ion, and one N and two O atoms of the imino­diacetate ligand. Neighbouring cations and anions are connected to each other by Cu·Cl semi‐coordination bonds of 2.830 (12) and 3.071 (12) Å, forming a Cu2Cl2 rectangular unit. The dinuclear units further link into a polymeric chain along the a axis through Cu·Oaqua interactions of 2.725 (3) Å. Including the long coordination bonds, the geometries around the Cu atoms in the cation and anion are square‐pyramidal and distorted octahedral, respectively.  相似文献   

8.
The syntheses and crystal structures of four new divalent transition metal complexes of the types [Cu2(dien)2(nic)](ClO4)3 · MeOH (nic = anion of nicotinic acid; dien = diethylenetriamine), 1; [Cu(dien)(nic)]2(nic)2, 2; [Cu(dien)(nic)]2(BF4)2 · 2MeOH, 3 and [Ni(dien)(nic)(H2O)]4(NO3)4 · 2MeOH, 4, are reported, which were prepared by the reactions of diethylenetriamine and nicotinic acid with Cu(ClO4)2 · 6H2O, Cu(OAc)2 · H2O, Cu(BF4)2 · 6H2O and Ni(NO3)2 · 6H2O in MeOH, respectively. These complexes were characterized by single-crystal X-ray diffraction method and elemental analyses. In the cation of complex 1, one nicotinate ligand bridges two Cu(II) metal centers through the pyridyl nitrogen atom and one of the carboxylate oxygen atoms. The cations of complexes 2 and 3 form the twelve-membered metallocycles, involving two Cu(II) ions that are bridged by two nicotinate ligands. The cation of complex 4 forms a tetranuclear cage with the four Ni(II) metal centers bridged by four nicotinate ligands and each Ni(II) metal center adopts the distorted octahedral geometry. Their thermal properties have been investigated by using differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA).  相似文献   

9.
The reactions of the new nitrilotriacetic acid N′,N′,N′‐tri(salicyloyl)trihydrazide (Ntash) with the corresponding metal salts gave four new complexes [Pb4(bshz)2] · 2DMF ( 1 ), [Co2(bshz)(C5H5N)6] · 2ClO4 · (C5H5N) · 2H2O ( 2 ), [Cu3(fshz)2(C5H5N)2] ( 3 ), and [Zn3(fshz)2(C5H5N)3]n · 2DMF ( 4 ), in which two multidentate ligands, namely N,N′‐disalicyloylhydrazine (H4bshz) and N‐formylsalicylhydrazide (H3fshz) were generated in situ from Ntash. The structures of these complexes were determined by single‐crystal X‐ray diffraction analysis. Complex 1 presents a novel tetranuclear lead(II) cluster structure with the four lead(II) cations in “hemidirected” coordination spheres. The neighboring tetranuclear clusters of 1 are connected by DMF molecules through weak Pb–O bonds, forming one‐dimensional ribbons. Complexes 2 and 3 show dinuclear and linear trinuclear structures with the corresponding CoIII and CuII ions in distorted octahedral and square‐planar coordination environments, respectively. Complex 4 exhibits a one‐dimensional zigzag chain structure. The magnetic properties of 3 and the photoluminescent properties of 4 were also investigated.  相似文献   

10.
Four new metal-organic coordination compounds [Ni(L4)2](ClO4)2 · 2H2O ( 1 ), [Cu2(L4)2(H2O)2(Cl)](Cl)3 · 5H2O ( 2 ), [Cu2(L3)2(H2O)(Cl)](Cl)2 · (NO3) · 6H2O ( 3 ), and [Cu(L3)(H2O)(NO3)](NO3) · H2O ( 4 ), were synthesized and characterized by X-ray crystallography with two isomeric tripodal ligands N1-(2-amino-ethyl)-N1-pyridin-3-ylmethyl-ethane-1,2-diamine (L3) and N1-(2-amino-ethyl)-N1-pyridin-4-ylmethyl-ethane-1,2-diamine (L4), respectively. It was found that coordination compound 1 exhibits mononuclear structure, and coordination compound 2 displays a one dimensional (1D) zigzag chain structure. Coordination compound 3 shows interesting cyclic hexanuclear structure, whereas coordination compound 4 is a 1D zigzag chain structure. The results indicate that metal ions, organic ligands, and anions have remarkable influence on the formation and structures of the coordination compounds.  相似文献   

11.
In the title complex, {[Cu(C8H8NO3S)2(H2O)]·2H2O}n, the CuII cation has a distorted square‐pyramidal coordination environment consisting of five O atoms, one from a water molecule, one from an N—O group and the other three from the carboxylate groups of two 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions. The aqua[3‐(2‐pyridylsulfanyl)propionato N‐oxide]copper(II) moieties are bridged by 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions to form an infinite three‐dimensional coordination polymer with a zigzag chain structure. The crystal structure is stabilized by hydrogen bonds.  相似文献   

12.
Three new copper(II) complexes with isonicotinic acid N-oxide (HL) and 1,10-phenanthroline (phen) as ligands, [Cu(L)(phen)(H2O)]2(NO3)2···2H2O (1), [Cu(L)(phen)(H2O)]2(ClO4)2···2H2O (2), and [Cu(L)(phen)Br]2- [Cu(L)(phen)(H2O)]2Br2···6H2O (3) have been synthesized and structurally characterized. The structures of all three complexes feature a Cu2 dimer formed by two Cu(II) ions interconnected by two bridging ligands. Each copper(II) ion has a distorted square pyramidal coordination geometry with elongated axial coordination by an aqua ligand or halogen anion. The isonicotinic acid N-oxide anion is bidentate, being coordinated to two Cu(II) ions through its N-O oxygen and one of its carboxylate oxygen atoms. Magnetic susceptibility measurements show a Curie–Weiss paramagnetic behavior characteristic of one unpaired electron for a copper(II) ion for all three complexes.  相似文献   

13.
Bis­[(2-pyridyl­methyl)­ammonio]silver(I) trinitrate, [Ag(C6H9N2)2](NO3)3, (I), and bis{bis­[(4-pyridyl­methyl)­ammonio]silver(I)} hexakis­(perchlorate) dihydrate, [Ag(C6H9N2)2]2(ClO4)6·2H2O, (II), are rare examples of complexes with cationic ligands. In (I), the Ag+ cation has a T-shaped [2+1] coordination involving the pyridine N atoms and a nitrate O atom, while in (II) there are three independent two-coordinate Ag complex cations (two with the Ag atoms on independent inversion centres) and disordered ClO4 ions. The crystal structures reveal the role of hydrogen bonding in stabilizing these complexes.  相似文献   

14.
The salts [Cu(phen)3][Cu(pheida)2]·10H2O ( 1 ) and [(phen)2Cu(μ‐BAAP)Cu(μ‐BAAP)Cu(phen)2][Cu(BAAP)2]·8.5H2O ( 2 ) (H2pheida = N‐phenetyl‐iminodiacetic acid, H2BAAP = N‐benzylaminoacetic‐2‐propionic acid, phen = 1, 10‐phenanthroline) have been prepared and studied by thermal, spectroscopic and X‐ray diffraction methods. 1 has the rather unusual [Cu(phen)3]2+ cation and two non‐equivalent [Cu(pheida)2]2— anions with a coordination type 4+2 but quite different tetragonality (T = 0.848 and 0.703 for anions 1 and 2, respectively). The crystal consists of multi‐π, π‐stacked chains (…anion 2 — cation — cation — anion 2…) connected by hydrophobic interactions; these chains build channels which are partially filled by anions 1 and water molecules. In contrast, compound 2 has a mixed‐ligand trinuclear cation with a bridging central moiety close similar to the counter anion. The formation of such a trinuclear cation is discussed as a consequence of the most advantageous molecular recognition process between [Cu(phen)2(H2O)1 or 2]2+ and [Cu(BAAP)2]2— in solution. In the crystal of 2, multi‐π, π‐stacked arrays of C6‐rings from phen and (BAAP)2— ligands of trinuclear cations generate channels where counter anions and water molecules are located.  相似文献   

15.
The crystal and molecular structure of [Cu(nif)2(4-PM)2]·CH3OH (1) and [Cu(2-Clbz)2(4-PM)2(H2O)] (2), (where nif = niflumate anion, 2-Clbz = 2-chlorobenzoate anion and 4-PM is the 4-pyridylmethanol), have been determinated by X-ray crystallography. The Cu2+ cation in (1), is coordinated by two pairs of oxygen atoms from asymmetric bidentate niflumate anions and by a pair of pyridine nitrogen atoms from monodentate 4-pyridylmethanol ligands in trans position forming an extremely elongated bipyramid. The Cu2+ cation in (2), is coordinated by a pair of oxygen atoms from monodentate 2-chlorobenzoate anions, further by a pair of pyridine nitrogen atoms from monodentate 4-pyridylmethanol ligands and finally by a water oxygen atom forming a tetragonal-pyramidal coordination polyhedron. The molecules of both complexes in crystal structures are linked by O-H…O hydrogen bonds, which created a three-dimensional hydrogen-bonding networks. The Π-Π stacking interactions are also observed in crystal structures of complex 2. The spectral properties (IR and electronic spectra) of both complexes were also investigated.  相似文献   

16.
Abstract

The synthesis, spectral characterization, crystal structure and properties of [Ba(H2O)2(NMF)2(4-nba)2], 1 (NMF = N-methylformamide; 4-nba = 4-nitrobenzoate), are reported. 1H and 13C NMR spectral data reveal the presence of NMF in 1. A strong band at 1660?cm?1 in the infrared spectrum indicates the binding of amide oxygen to Ba(II) which is confirmed by the single crystal structure. The unique Ba(II) in 1 situated on a mirror plane exhibits nine coordination and is bonded to two symmetry related monodentate terminal NMF ligands via the amide oxygen, and a terminal aqua ligand. The μ2-monoatomic bridging binding mode of each of a crystallographically independent 4-nba ligand and a unique water ligand link the Ba(II) cations into an infinite chain extending along a, leading to the formation of a 1D coordination polymer with Ba···Ba separations of 4.2522(3) Å. In the chain, the {BaO9} polyhedra are linked in a face sharing fashion. Thermal decomposition of 1 results in the formation of BaCO3 residue. A comparative study of the structural chemistry of several barium coordination polymers is described.  相似文献   

17.
Tryptammonium hydrogentartarate (1) crystallizes in the orthorhombic space group P212121 and exhibits a crystal structure consisting of the tryptammonium cation, hydrogentartarate anion and a solvent methanol. The cations and anions are joined into a 3D network by intermolecular NH···OH(CH3) and NH3···O(tart) bonds with lengths of 2.998, 2.772, 2.902, and 2.847 Å, respectively. Hydrogentartarate anions are themselves connected by strong intermolecular O···H-O hydrogen bonds with lengths of 2.481 Å into infinite chains. The anions also participate in moderate hydrogen bonding with solvent methanol molecules of the (tart)O···O(CH3) type with bond lengths of 2.736 and 2.762 Å). The conformational preference of the tryptammonium cation is discussed by comparing the results with the data for other crystallographically determined structures of salts. Quantum chemical calculations at (density functional theory) DFT (B3LYP) level of theory and 6-311++G** basis set are performed for the interacting system tryptammonium cation/H2O with a view to predicting the geometry of the most stable conformer. The optical properties of tryptammonium hydrogentartarate have been elucidated in the solid-state by means of linear-polarized solid state IR-spectroscopy (IR-LD) of oriented solids as a colloid suspension in nematic hosts. Some limitations of the method are discussed as well.  相似文献   

18.
Four lanthanide supramolecular coordination compounds, [Eu(gly)2(phen)2(H2O)2](ClO4)3(phen)4 · H2O ( 1 ), [Eu2(APA)6(phen)2](ClO4)6(phen)4 · 3H2O ( 2 ), [Tb2(ABA)4(phen)4](ClO4)6(phen)4 ( 3 ), and [Eu2(AHA)4(phen)4](ClO4)6(phen)2 · 2H2O · 2C2H5OH ( 4 ) (gly = glycine, APA = 3‐aminopropionic acid, ABA = 4‐aminobutanoic acid, AHA = 6‐aminohexanoic acid, phen = 1, 10‐phenanthroline), were synthesized and characterized by single crystal X‐ray diffraction. Compound 1 has a 2‐D supramolecular layered structure of mononuclear coordination cations and free phen molecules connected via hydrogen bonding and π‐π stacking interactions. 2 forms a 3‐D supramolecular network by hydrogen bonding between binuclear coordination cations and free phen molecules, between coordination cations and lattice water molecules, and π‐π stacking interactions between free phen molecules. Compounds 3 and 4 form 2‐D supramolecular structures with π‐π stacking between coordinating phen molecules, and between free phen molecules hydrogen‐bonded to the binuclear coordination cations. The high‐resolution emission spectra show only one Eu3+ ion site in the title complexes. The aqueous solutions of the title complexes are all photochromic with the color of the solution changing from yellow to green when irradiated by mercury lamp. During the decoloration process, they return to yellow color.  相似文献   

19.
The title mixed-metal compound, [Cu(C2H8N2)2(H2O)2][Ni(C2H8N2)3]2(C10H6O6S2)3·4H2O, was obtained during investigations of the porous frameworks constructed by amino-coordinated metal complex cations and large organic anions. All three naphthalene-2,6-di­sulfonate anions and the [Cu(en)2(H2O)2]2+ cation are located on crystallographic inversion centers and assemble into an extended two-dimensional network through intermolecular hydrogen bonds, creating cavities in which the [Ni(en)3]2+ cations and water mol­ecules are included.  相似文献   

20.
The title compound, [Cu2(C6H12N4O2)(ClO4)2(C11H6N2O)2]·2C11H6N2O, contains a dinuclear copper(II) complex which lies about a twofold axis at the mid‐point of the C—C bond of the ox­amide ligand that bridges the two CuII atoms. The Cu·Cu distance is 5.215 (2) Å and the Cu atoms have distorted octahedral coordination geometry. Intramolecular N—H·O and N—H·N hydrogen bonds and intermolecular C—H·O hydrogen bonds, together with π–π stacking interactions, dominate throughout the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号