首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The excess enthalpies of solution with respect to water of some primary and secondary alcohols in dodecyldimethylamine oxide (DDAO) micellar solutions were measured by mixing aqueous solutions of alcohols with surfactant solutions. Standard free energies, enthalpies and entropies were obtained from the distribution of alcohols between aqueous and micellar phases. It is shown that thermodynamics of transfer of secondary alcohols from aqueous to the DDAO micellar phase differ slightly from those of their corresponding primary alcohols, that the additivity rule holds for free energies of transfer and that enthalpy and entropy display convex curves. The present data are compared with those from the aqueous to the dodecyltrimethylammonium bromide (DTAB) micellar phases and to the literature data for transfer from water to octane. The role of the hydrophilic interactions between OH group and the micellar head groups and of the hydrophobic interactions between the methylene group and its apolar environment is evidenced.  相似文献   

2.
The densities of methanol, ethanol, 1-propanol, 1-butanol and 1-hexanol were measured in aqueous solutions of sodium dodecylsulfate at 25°C. The partial molar volumes of the alcohols at infinite dilution in the aqueous surfactants solutions were calculated and discussed using a mass-action model for the alcohol distribution between the aqueous and the micellar phase. The partial molar volumes of the alcohols in the aqueous and in the micellar phases, and the ratios between the binding constant and the aggregation number, were calculated. The partial molar volume for all the alcohols in micellar phase is 10 cm3-mol–1 smaller than that in octane. This can be related to the strong hydrophilic interaction between the head groups of the alcohol and the micellized surfactant. From the extrapolated values of the distribution constant and the partial molar volumes in the aqueous and micellar phases, the standard partial molar volume of heptanol in micellar solutions was found to decrease with increasing surfactant concentration. The standard free energy of transfer of alcohols from water to micelles was rationalized in terms of hydrophilic and hydrophobic contributions. A model is proposed in which the empty space around each solute is assumed to be the same in the gas and liquid phases, and is used to explain the behavior of micelles in the presence of amphiphilic solutes.  相似文献   

3.
The enthalpies of mixing of some n-nitriles (from acetonitrile to valeronitrile) aqueous solutions with dodecyltzimethylammonium bromide, sodium dodecylsulfate and dodecyltzimethylammonium oxide micellar solutions were determined. The measurements were performed by systematically changing the surfactant concentration at a given solute concentration. The experimental enthalpies were rationalized in terms of the standard enthalpy of transfer of solute from the aqueous to the micellar phase and of the distribution constant between the two phase. Information on the effect of the nature of the surfactant on the standard thermodynamic quantities of transfer(G t o , H t o , TS t o ) is reported. The present data are compared to those previously reported for primary alcohols and the solubilizing properties shown by the different types of micelles are discussed.  相似文献   

4.
The enthalpies of solution and of dilution of 1-butanol and 1-pentanol were measured in micellar solutions of dodecyltrimethylammonium bromide by systematically changing the concentration of alcohols and surfactant. The enthalpies of solution at infinite dilution of alcohols at each surfactant concentration were evaluated from a linear plot. This quantity increases with surfactant concentration (up to 0.8m) with a curvature which depends on the alcohol alkyl chain length. The difficulties arising for a quantitative treatment of both the enthalpies of dilution and of solution at finite alcohol concentrations are discussed. The dependence on the surfactant concentration of the standard enthalpies of solution and the enthalpies of dilution for m0 are rationalized. From the resulting equations the distribution constant, standard enthalpy of transfer, standard enthalpy of solution, and the alcohol-alcohol interaction parameter in the micellar phase are evaluated. The enthalpies of transfer obtained using this technique agree well with those previously reported from enthalpies of mixing. The distribution constants also agree with those reported in the literature from several approaches: mixing enthalpies, partial molar volumes, and the dependence of the cmc on added alcohol.  相似文献   

5.
At a given surfactant-surfactant ratio, the enthalpies of transfer ΔH (W→W+S) of pentanol 0.03m from water to sodium dodecylsulfate (NaDS)-dodecyldimethylamine oxide-water mixtures as functions of the surfactants mixture concentration (m t) were determined. ForX NaDS=0.9, ΔH (W→W+S) increases monotonically withm t such as observed for pure surfactants. ForX NaDS=0.12 and 0.3, ΔH (W→W+S) increases withm t up to 0.12m beyond which it decreases withm t. AtX NaDS=0.6, two monotonic curves can be distinguished in the ΔH (W→W+S)vs. m t trend. Experimental data were fitted through an equation previously reported for additives in pure surfactants derived by assuming the pseudo-phase transition model for the micellization and a mass action model for the distribution of the additive between the aqueous and the micellar phases. This method did permit to simultaneously obtain the distribution constant of the alcohol between the aqueous and the micellar phase (and, then, the standard free energy of transfer) and its enthalpy of transfer from the aqueous to the micellar phases. By combining these properties the standard entropies of transfer were calculated. From these results, the excess properties of pentanol in the mixed micelles were calculated as a function of the mixture composition. The excess enthalpies and entropies are positive and compensate with each other leading to null values for the excess free energies in the whole range of the mixed micelles composition.  相似文献   

6.
Densities of the ternary system water-sodium dodecylsulfate (NaDS)-pentanol and of the binary systems butanol-octane and pentanol-octane were measured at 15, 25, and 35 °C. The apparent molar volume of pentanol in the ternary system was analyzed using a mass-action model for the alcohol distribution in micellar solutions. The partial molar volume of alcohol bound to the micelles and the ratio between the binding constant and the aggregation number of the surfactant are calculated. The partial molar volume binding constant, is discussed in terms of solubilization sites of the alcohol in the micelles whereas the binding constant is compared with that derived from the Nernstian partition constant previously obtained calorimetrically. From the binding constant and Poisson statistics the distribution function of the number of alcohol molecules per micelle, as a function of the concentration of alcohol and of surfactant, are calculated. The derived distribution functions show that a large amount of alcohol can be solubilized in the micelles so that alcoholic mixed micelles can be predicted when the concentration of pentanol is greater than that of NaDS.  相似文献   

7.
Integral enthalpies of solution at very low concentrations of sodium carboxylates and sodium dodecylsulfate in aqueous tert-butyl alcohol solutions at 25°C and 35°C were measured with an isoperibol submarine calorimeter. The enthalpies and heat capacities of transfer of these surfactants from water to aqueous tertbutyl alcohol solutions were derived from integral enthalpies of solution. The results are explained in terms of the structural alteration effect of the constituent hydrophobic and hydrophilic groups of the solute.  相似文献   

8.
The enthalpies of solution of sodium iodide in methanol, ethanol and acetone and in mixtures of methanol and ethanol with water were measured over wide ranges of electrolyte concentration and temperature. Standard enthalpies of solution, transfer enthalpies of NaI from alcohols to alcohol-water mixtures, and temperature coefficients of enthalpies of solution have been calculated. Thermodyanmic characteristics of solution and solvation of the Na+ and I ions in acetone and ethanol were determined at 243–298 K. It is noted that at lower temperatures the disruption of solvent structure by ions is a local effect. The presence of negative solvation of the Na+ and I ions in alcohol-water mixtures at lower temperatures is demonstrated.  相似文献   

9.
The enthalpy of solution of phenoxy 2-ethanol, 1 phenoxy,-3 propanol and benzylalcohol was determined at 25 °C in aqueous sodium dodecylsulfate and hexadecyltrimethylammonium bromide solution, up to 0.2 mol/kg surfactant concentration. Using the pseudo-phase model, the standard enthalpy of transfer and the partition coefficient of the alcohols between micelle and water are calculated. The latter quantity is found to be systematically larger when derived from enthalpy than from free energy measurements. Using the so-called compensation plot, the solution thermodynamics of aromatic and aliphatic alcohols in aqueous sodium dodecylsulfate and in the octane+water systems are compared. Aromatic alcohols display an anomalous behavior in the octane+ water system but not in the micellar one.The standard enthalpy of solution of various alcohols presents, when plotted against hexadecyltrimethylammonium bromide concentration, a shoulder in the region around 0.05 mol/kg; a discussion is presented on the evidence for alleged micellar structural changes in aqueous micellar systems.  相似文献   

10.
The enthalpies of transfer from water to aqueous surfactant solutions, H(WW+S), of polar additives have been determined as a function of the surfactant concentration at fixed additive concentration. The surfactants used are sodium dodecylsulfate (NaDS), dodecyltrimethylammonium bromide and dodecyldimethylamine oxide (DDAO). The additives used are iso-butanol t-butanol, butoxyethanol, phenol, benzene, tributylphosphine oxide (TBPO), octyldimethylphosphine oxide (ODPO), octydimethylamine oxide (ODAO), DDAO and NaDS. A maximum was observed in the plots of H(WW+S) vs. fsms curves for ODPO and ODAO in NaDS while a small minimum was observed for TBPO. The experimental data are rationalized on the basis of the pseudo-phase transition model for the micellization process and a mass action model for the distribution of the additive between aqueous and micellar phases. The standard free energies, enthalpies and entropies of transfer of the additives from the aqueous to the micellar phases are reported. The effect of different butanol isomers on the thermodynamics of solubilization in the micellar phase has been derived. The enthalpies of transfer of benzene are always negligible with respect to those of phenol while the free energies of transfer are always comparable. Studies of symmetrical and asymmetrical additives show that asymmetry causes an increase of the free energy of transfer due to the decrease of the entropy. The thermodynamics of transfer of NaDS from the aqueous to the DDAO micellar phases and of DDAO from the aqueous to the NaDS micellar phases are compared to the thermodynamics of micellization of the two surfactants; the formation of mixed micelles seems to be energetically unfavored with respect to the pure micelles.  相似文献   

11.
Many studies support the idea that alcohols in water undergo microphase transitions which are, in many respects, similar to micellization. To investigate the interactions in these systems even further, the volumes of transfer of normal alcohols of intermediate chain length, kept near infinite dilution, were measured from water to aqueous solutions of 2-propanol and 2-butoxyethanol. These results were compared with the volumes of transfer of the same alcohols to aqueous solutions of octyldimethylamine oxide, a well-characterized non-ionic surfactant. The trends observed are all very similar, exhibiting in many cases a maximum in the transition region. This tends to confirm the formation of mixed aggregates in aqueous mixtures of alcohols, but, in a general way, it is also shown that the magnitude of an extremum in the functions of transfer is related to the relative hydrophobicities of the present solutes, the extremum appearing in most cases only when the transferred solute is more hydrophobic than the main solute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号