首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶胶凝胶法和旋涂法制备Sb掺杂钙钛矿结构ZTO(ZnSnO3)透明电薄膜,并借助XRD、SEM、XPS、UV-Vis和Hall效应测试等手段研究了其结构和性能。比较了Sb离子单独置换ZnSnO3晶体中的Zn2+或Sn4+,以及同时置换Zn2+和Sn4+等3种置换方式所得薄膜的结晶状态,分析了不同置换方式形成的薄膜中Sb离子实际占有的晶格位置,以及Sb5+与Sb3+的比例变化。探讨了不同置换方式晶体中氧空位(VO..)、锌间隙(Zni..)和锡离子变价(SnSn")等结构缺陷相应的含量变化,并研究Sb离子掺杂浓度对薄膜晶体结构、结构缺陷和电阻率的影响。研究表明,3种置换方式的Sb掺杂ZTO薄膜均保持单一ZnSnO3晶相,并且Sb离子均按设计的方案进入了相应的晶格位置,但不同置换方式的薄膜中,Sb5+与Sb3+的比例不同,并且会随Sb离子浓度增大而逐渐减小。研究证明Sb离子置换方式以及掺杂浓度均会显著影响薄膜中载流子的浓度和迁移率,从而影响其电性能。在所制备的薄膜中,Sb离子单独置换Zn2+且组成为Sb0.15Zn0.35Sn0.5O1.5的薄膜电阻率最低,为0.423 Ω·cm。此外,所有Sb掺杂ZTO薄膜在360~800 nm波长范围内透过率均在78%以上。  相似文献   

2.
本文报道以均匀共沉淀法制得 Sbx Sn1 -x O2 体系半导体气敏材料 ,研究了固溶体组成与电导的变化规律 ,并对导电机制进行了讨论。结果表明 :x<0 .30时均可生成固溶体。微量 Sb(x=0 .0 4 )的掺入即能提高 Sn O2 电导一个数量级 ,在 x≤ 0 .0 4区间电导都呈上升趋势 ,其后一直到固溶范围内随着 X增加 ,电导反而缓慢下降。根据体系中存在的 Sb°Sn和 Sb′Sn两种缺陷 ,讨论了其电导变化和导电机制。认为平衡 Sb°Sn 2 e′=Sb′Sn对上述导电机制起决定作用。XPS分析对 Sb5 、Sb3 的含量进行了确认 ,交流阻抗谱的测试结果从另一角度对电导行为加以证实。  相似文献   

3.
采用化学共沉淀法,以可溶性的镉盐和三价锑盐为源物质、氢氧化物作共沉淀剂,在较宽的Cd/Sb摩尔配比范围内,制备出了具有缺陷烧绿石结构的镉锑复合氧化物Cd2Sb2O6.8及其固溶体。研究了烧成条件对产物的影响,在较低温度(600℃)下得到了纯相Cd2Sb2O6.8的超微粉,并对其高温反应机理进行了探讨。所得微粉产物制成的厚膜元件经气敏测试,发现n(Cd)/n(Sb)=1.10、 900 ℃、3 h烧成的间隙型固溶体Cd2+XSb2O6.8,对乙炔气体具有非常优秀的气敏性能。  相似文献   

4.
张兰  尉继英  赵璇  李福志  江锋 《物理化学学报》2001,30(10):1923-1931
90Sr 是核电站放射性废液中需要重点去除的核素之一,水合锑氧化物Sb2O5·mH2O可以在酸性条件下选择性吸附脱除90Sr. 本文在以醇为溶剂的无水体系中,以化学性能较稳定且毒性低的SbCl3为原料,以紫外线照射辅助双氧水氧化及控制水解两步法制备出自掺杂型锑氧化物Sb(Ⅲ)/Sb2O5. 文中采用X射线光电子能谱(XPS)、X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱对材料结构进行结构表征,并采用批量实验方法研究不同Sb(Ⅲ)/Sb(total)比例与Sr(Ⅱ)吸附性能的相关性,以及溶液pH 值对Sr(Ⅱ)吸附性能的影响. 实验结果表明:Sb(Ⅲ)可在较大的比例范围内共存于立方烧绿石型Sb2O5晶格内,形成良好的固溶体Sb(Ⅲ)/Sb2O5;制备过程中通过控制醇溶剂的类型、氧化剂的添加方式以及两步反应温度,可以获得具有不同氧化率,即不同Sb(Ⅲ)/Sb(total)比例的Sb(Ⅲ)/Sb2O5材料;其中Sb(Ⅲ)/Sb(total)比例为49.8%的锑氧化物材料吸附性能最好,在纯水体系下对Sr(Ⅱ)的分配系数为6.6×107 mL·g-1,在pH=3-13 范围内对Sr(Ⅱ)具有良好的吸附性能,并且在本文实验条件下,Sr(Ⅱ)在锑氧化物材料上的吸附更好地符合Langmuir吸附模型.  相似文献   

5.
在温和水热条件下,合成了双钙钛矿型Ba2InSbO6,采用XRD、TEM、XPS、ICP及IR等技术表征产物的结构及组成。XRD数据的Rietveld拟合结果表明,Ba2InSbO6a=0.416 782(13) nm的立方钙钛矿结构,属于Pm3m121Sb M?ssbauer谱测试表明,产物的同质异能移可归属为Sb及Sb-O键具有明显的共价特征。合成条件的研究表明,Sb源对合成具有重要影响,且Sb2O3锑源可有效地降低杂质的生成。  相似文献   

6.
CuO/Sn0.8Ti0.2O2催化剂的表征及对NO+CO反应活性研究   总被引:2,自引:0,他引:2  
Reducibility and characteristics of CuO/Sn0.8Ti0.2O2 catalysts were examined by using a microreactor-GC NO+CO reaction system, BET, TG-DTA, FTIR, XRD and H2-TPR techniques. CuO/Sn0.8Ti0.2O2 had high activity in NO+CO reaction, showing 93% NO conversion at 300 ℃ in air, and 100% NO conversion at 225 ℃ after H2 pretreatment. The pore size distribution of Sn0.8Ti0.2O2 was mainly as micro-pores and meso-pores (1~5 nm), and the specific surface area and total pore volume of Sn0.8Ti0.2O2 were 69 m2·g-1 and 0.15 cm3·g-1, respectively. As shown by XRD analysis, there was no CuO crystal diffraction peak at 9%CuO loading, but two CuO crystal diffraction peaks at 2θ 35.5° and 38.7° were present at 12% CuO loading. FTIR detected the adsorption of NO and CO on the surface of reduced 12%CuO/Sn0.8Ti0.2O2. The Cu2+ sites and support surface adsorbed NO, and the process of NO adsorption led to the formation of N2O and NO3-. In contrast, the Cu+、Cu0 sites and support surface adsorbed CO, and when the mixed gases of NO and CO were adsorbed by support surface, no NO3- was formed. H2-TPR showed four reduction peaks (α, β, γ and δ). The α, β and γ peaks were the reductions of CuO species, and the δ peak was the reduction of Sn0.8Ti0.2O2.  相似文献   

7.
采用溶胶-凝胶法制备出纯TiO2和不同浓度Sn4+离子掺杂的TiO2光催化剂(TiO2-Snx%, x%代表Sn4+离子掺杂的TiO2样品中Sn4+离子摩尔分数). 利用X 射线衍射(XRD)、X 射线光电子能谱(XPS)和表面光电压谱(SPS)确定了TiO2-Snx%催化剂的晶相结构和能带结构, 结果表明: 当Sn4+离子浓度较低时, Sn4+离子进入TiO2晶格, 取代并占据Ti4+离子的位置, 形成取代式掺杂结构(Ti1-xSnxO2), 其掺杂能级在导带下0.38 eV处; 当Sn4+离子浓度较高时, 掺入的Sn4+离子在TiO2表面生成金红石SnO2, 形成TiO2和SnO2复合结构(TiO2/SnO2), SnO2的导带位于TiO2导带下0.33 eV处. 利用瞬态光电压谱和荧光光谱研究了TiO2-Snx%催化剂光生载流子的分离和复合的动力学过程, 结果表明, Sn4+离子掺杂能级和表面SnO2能带存在促进光生载流子的分离, 有效地抑制了光生电子与空穴的复合; 然而, Sn4+离子掺杂能级能更有效地增加光生电子的分离寿命, 提高了光生载流子的分离效率, 从而揭示了TiO2-Snx%催化剂的光催化机理.  相似文献   

8.
使用Ge4+、Sn4+作为掺杂离子, 通过高温固相法制备四价阳离子掺杂改性的尖晶石LiMn2O4材料. X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明, Ge4+离子取代尖晶石中Mn4+离子形成了LiMn2-xGexO4 (x=0.02,0.04, 0.06)固溶体; 而Sn4+离子则以SnO2的形式存在于尖晶石LiMn2O4的颗粒表面. Ge4+离子掺入到尖晶石LiMn2O4材料中, 抑制了锂离子在尖晶石中的有序化排列, 提高了尖晶石LiMn2O4的结构稳定性; 而在尖晶石颗粒表面的SnO2可以减少电解液中酸的含量, 抑制酸对LiMn2O4活性材料的侵蚀. 恒电流充放电测试表明, 两种离子改性后材料的容量保持率均有较大幅度的提升, 有利于促进尖晶石型LiMn2O4锂离子电池正极材料的商业化生产.  相似文献   

9.
稀土La掺杂Ti/Sb-SnO2电极的制备及性能研究   总被引:1,自引:0,他引:1  
采用浸渍法制备稀土La掺杂Ti/Sb-SnO2电极,以活性艳红X-3B为目标有机物,考察电极的电催化性能,对制备温度和La掺杂量进行了详细的实验研究,确定了适宜的制备条件为热处理温度450 ℃、La掺杂量0.7%。采用SEM、EDS、XRD、XPS等分析方法表征了电极的形貌、组成及结构。发现掺杂稀土La能降低界面电阻,使Sb元素向电极表面富集,电极中的Sb、La元素分别以Sb4+、La3+的形式存在。对空白电极和La掺杂Ti/Sb-SnO2电极进行了动电位扫描测定,考察了空白电极和La掺杂Ti/Sb-SnO2电极的析氧电位;并采用破损法测定它们的电极寿命。结果表明,La掺杂Ti/Sb-SnO2电极具有更高的析氧电位和更长的电极寿命。  相似文献   

10.
以共沉淀法与煅烧法联用,成功制备了一系列ZnAl2O4xMn4+样品。通过扫描电镜和X射线粉末衍射测试研究了样品的形貌和物相特征,结果表明尖晶石结构的ZnAl2O4中[AlO6]的八面体位可以有效被Mn4+替代。通过荧光激发和发射光谱研究了样品的发光性能,发现Mn4+在ZnAl2O4体系中掺杂可以显示出明亮的红色发光(发射峰值位于680 nm处)。比较不同Mn4+浓度(Mn与Al的物质的量之比)掺杂样品的发光强度时发现,Mn4+最佳掺杂浓度为0.06%。通过德克斯特公式分析了发光强度与浓度关系,探究浓度猝灭机制,结果表明最邻近离子之间能量传递造成Mn4+浓度猝灭的发生。为了提高Mn4+的发光强度,选择了7种金属离子(Li+、Na+、K+、Ca2+、Sr2+、Sn2+和Ga3+)与Mn4+共掺杂进入ZnAl2O4基质中,其中效果较突出的为Li+和Ga3+,其共掺杂使Mn4+发光强度分别增强0.6倍和1倍。  相似文献   

11.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

12.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

13.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

14.
Novel complex oxides Ca14Zn6Ga10O35 and Ca14Zn5.5Ga10.5O35.25 were prepared in air at 1200 °C, 72 h. Refinements of their crystal structures using X-ray powder diffraction data showed that Ca14Zn6Ga10O35 is ordered (S.G. F23, =0.0458, Rp=0.0485, Rwp=0.0659, χ2=1.88) and Ca14Zn5.5Ga10.5O35.25 disordered (S.G. F432, =0.0346, Rp=0.0601, Rwp=0.0794, χ2=2.82) variants of the crystal structure of Ca14Zn6Al10O35. In the crystal structure of Ca14Zn6Ga10O35, there are large empty voids, which could be partially occupied by additional oxygen atoms upon substitution of Zn2+ by Ga3+ as in Ca14Zn5.5Ga10.5O35.25. These oxygen atoms are introduced into the crystal structure of Ca14Zn5.5Ga10.5O35.25 only as a part of four tetrahedra (Zn, Ga)O4 groups sharing common vertex. This creates a situation where even a minor change in the chemical composition leads to considerable anion and cation disordering resulting in a change of space group from F23 (no. 196) to F432 (no. 209).  相似文献   

15.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

16.
一些具有NASICON型网格结构的固体电解质具有高的电导率和好的稳定性,NASICON的意思是Na Super Ionic Conductor[1]。当NaZr2(PO4)3中P5 被Si4 部分取代时便可以得到具有NASICON结构的Na1 xZr2SixP3-xO12体系,其具有高的钠离子电导率。然而有相同结构的Li1 xZr2SixP3-xO12体系的离子电导率却很低,这是因为Li 半径太小,而NASICON三维网格结构的离子通道太大,两者不匹配而使电导率下降[2]。但当LiZr2(PO4)3中Zr4 被离子半径小些的Ti4 取代,所得LiTi2(PO4)3的通道就与Li 半径相匹配,适合于锂离子的迁移,从而使其电导率…  相似文献   

17.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

18.
A new aluminum silicon oxycarbonitride, (Al5.8Si1.2)(O1.0C3.5N1.5), has been synthesized and characterized by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS). The title compound is hexagonal with space group P63/mmc and unit-cell dimensions a=0.322508(4) nm, c=3.17193(4) nm and V=0.285717(6) nm3. The atom ratios of Al:Si and those of O:C:N were, respectively, determined by EDX and EELS. The initial structural model was successfully derived from the XRPD data by the direct methods and further refined by the Rietveld method. The crystal is most probably composed of four types of domains with nearly the same fraction, each of which is isotypic to Al7C3N3 with space group P63mc. The existence of another new oxycarbonitride (Al6.6Si1.4)(O0.7C4.3N2.0), which must be homeotypic to Al8C3N4, has been also demonstrated by XRPD and TEM.  相似文献   

19.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

20.
Bi6.4Pb0.6P2O15.2 is a polymorph of structures with the general stoichiometry Bi6+xM1−xP2O15+y. However, unlike previously published structures that consist of layers formed by edge sharing OBi4 tetrahedra bridged by PO4 and TO6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) Å, b=11.3692(3) Å, c=16.3809(5) Å, β=101.167(1)°, Z=10. Single-crystal X-ray diffraction data were refined by least squares on F2 converging to R1=0.0387, wR2=0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb)4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) Å. Pairs of such cubes share an edge to form a Pb3O20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb)4 units, and some oxygen ions of the polyhedra are also part of PO4 tetrahedra. One, two, three and or four PO4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ?3.1 Å vary from 2.090(12) to 3.07(3) Å. The articulations of Pb cubes, Bi polyhedra and PO4 tetrahedra link into the three-dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号