首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The adsorption structures of benzene and pyridine on Si(5 5 12)-2 x 1 were studied at 80 K by using a low-temperature scanning tunneling microscope and density functional theory calculations. These structures are different from those observed on low-index Si surfaces: benzene molecules exclusively bind to two adatoms, that is, with di-sigma bonds between carbon atoms and silicon adatoms, leading to the loss of benzene aromaticity; in contrast, pyridine molecules interact with adatom(s) through either Si-N dative bonding or di-sigma bonds. Dative bonding configurations with pyridine aromaticity are the dominant adsorption features and are more stable than di-sigma bonding configurations. Thus the dative bonding of nitrogen-containing heteroaromatic molecules provides a strategy for the controlled attachment of aromatic molecules to high-index surfaces.  相似文献   

2.
The adsorption of pyridine onto the Ge(100) surface has been studied using both real-time scanning tunneling microscopy (STM) and ab initio pseudopotential density functional calculations. The results show that pyridine molecules adsorb on the electron-deficient down-Ge atoms of the Ge=Ge dimers via Ge-N dative bonding, with the pyridine ring tilted to the surface. The electron-rich up-Ge atoms remaining after adsorption of pyridine induce an asymmetric dimer row, which is mainly reconstructed to the c(4 x 2) structure. At pyridine coverage of 0.25 ML, the adsorbed pyridine molecules form a perfectly ordered monolayer. The entire Ge substrate underlying this organic monolayer rearranges into the c(4 x 2) structure.  相似文献   

3.
We experimentally demonstrated that pyridine/Si(111)-7 x 7 can act as an electron donor/acceptor pair as a result of the charge transfer from the electron-rich N atom of pyridine to the electron-deficient adatom of the Si surface, evidenced by the upshift of 1.8 eV (state A) for the N(1s) core level upon the formation of a datively bonded complex compared to physisorbed molecules. Another state (B) whose N(1s) binding energy downshifts by 1.2 eV was assigned to an adduct through Si-C and Si-N covalent linkages, formed via a [4 + 2]-like addition mechanism on Si(111)-7 x 7. Binding molecules through the formation of the dative bond resulted from significant electron transfer opens a new approach for the creation of Si-based molecular architectures and modification of semiconductor interfacial properties with unsaturated organic molecules.  相似文献   

4.
Using a combination of local -- scanning tunneling microscopy -- and spatially integrated, but chemically sensitive probes -- X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy -- we have examined how 3-butenenitrile reacts with the Si(001)-2 x 1 surface at room temperature. Electron spectroscopies indicate three different nitrogen chemical bonds: a Si-C=N-Si bond, a C=C=N cumulative double bond, and a CN moiety datively bonded to a silicon atom. All molecular imprints detected by scanning tunneling microscopy (STM) involve two adjacent silicon dimers in the same row. The three geometries we propose -- a double di-sigma bonding via the CN and the C=C, a cumulative double bond formation associated with alphaC-H bond dissociation, and a di-sigma vinyl bonding plus a CN datively bonded to a silicon atom -- are all compatible with electron spectroscopies and data. Real-time Auger yield kinetic measurements show that the double di-sigma bonding geometry is unstable when exposed to a continuous flux of 3-butenenitrile molecules, as the Si-C=N-Si unit transforms into a CN moiety. A model is proposed to explain this observation.  相似文献   

5.
The adsorption of thiophene on Ge(100) has been studied using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculations. Until now, thiophene is known to react with the Ge(100) dimer through a [4 + 2] cycloaddition reaction at room temperature, similar to the case of thiophene on Si(100). However, we found that thiophene has two adsorption geometries on Ge(100) at room temperature, such as a kinetically favorable Ge-S dative bonding configuration and a thermodynamically stable [4 + 2] cycloaddition adduct. Moreover, our STM results show that under 0.25 ML thiophene molecules preferentially produce one-dimensional molecular chain structures on Ge(100) via the Ge-S dative bonding configuration.  相似文献   

6.
Using pyridine as an example, a thermodynamic analysis of the low temperatures adsorption of aromatic organic molecules with a N atom on the Si(100) surface is presented. This study is restricted to the case of an equilibrium with the gas phase. Dative attachment which is the only way to preserve aromaticity is the more stable form of adsorbed pyridine in dilute solutions at low temperatures. Two factors limit the domain of stability of dative attachment: repulsive interactions between dative bonds prevent them from being present in concentrated solutions while aromaticity contributes to a decrease in the entropy, which explains the vanishing of dative bonds at high temperatures even in dilute solutions.  相似文献   

7.
The adsorption configurations of methionine molecules on the Ge(100) surface have been studied by using DFT calculations, core‐level photoemission spectroscopy (CLPES), and low‐energy electron diffraction (LEED) to scrutinize the adsorption structure as a function of coverage. At first, we obtained two important and stable structures. One is the most stable structure between these structures described as an “O H dissociated‐N dative‐S dative‐bonded structure” and the other is a less stable adsorption structure of these indicating an “O H dissociated‐S dative‐bonded structure” by using DFT calculations. We also performed CLPES to clarify our DFT calculation results. Through the spectral analysis of the S 2p, C 1s, N 1s, and O 1s core‐level spectra, we acquired the reasonable results that also revealed quite different bonding configurations depending on the methionine coverage. At low coverage (ca. 0.30 ML), a single type of sulfur and charged nitrogen peaks, which indicate an “O H dissociated‐N dative‐S dative‐bonded structure”, were observed. On the other hand, two types of sulfur peaks with thiol formation and two nitrogen peaks with neutralized and charged characteristics were monitored at a higher coverage (0.60 ML and above), which can be described as an “O H dissociated‐S dative‐bonded structure”. Hence, we can clearly demonstrate that our results obtained from CLPES spectra and DFT calculations are matched well with each other. Moreover, we additionally confirmed that the relative population of the two types of thiols and amines being included in methionine in between half monolayer induces a surface reorientation in the ordering from 2×1 to 1×1 employing LEED. This interesting variation of the methionine adsorbed on the Ge(100) surface by coverage dependence will be precisely discussed by using DFT calculations, CLPES, and LEED.  相似文献   

8.
Incorporating diversity into structures constructed from the organic modification of silicon surfaces requires the use of molecules that contain multiple substituents of different types. In this work we examine the possible dissociation pathways of diethylhydroxylamine (DEHA, (C(2)H(5))(2)NOH) on the surface of clean silicon(100)-2x1 using cluster and planewave computational methods and high resolution electron energy loss spectroscopy. Our computational results show that DEHA initially forms a strongly-bound complex with the surface via a dative N-Si bond. A low-barrier O-H bond scission then occurs yielding a surface silicon dimer capped by the (C(2)H(5))(2)NO and H fragments. Calculated and measured vibrational spectra support the computed reaction mechanism.  相似文献   

9.
The electronically excited states of the Si(100) surface and acetylene, benzene, and 9,10-phenanthrenequinone adsorbed on Si(100) are studied with time-dependent density functional theory. The computational cost of these calculations can be reduced through truncation of the single excitation space. This allows larger cluster models of the surface in conjunction with large adsorbates to be studied. On clean Si(100), the low-lying excitations correspond to transitions between the pi orbitals of the silicon-silicon dimers. These excitations are predicted to occur in the range 0.4-2 eV. When organic molecules are adsorbed on the surface, surface --> molecule, molecule --> surface, and electronic excitations localized within the adsorbate are also observed at higher energies. For acetylene and benzene, the remaining pipi* excitations are found to lie at lower energies than in the corresponding gas-phase species. Even though the aromaticity of 9,10-phenanthrenequinone is retained, significant shifts in the pipi* excitations of the aromatic rings are predicted. This is in part due to structural changes that occur upon adsorption.  相似文献   

10.
The vibrational behaviour of the cyclic carboxylic acid dimer is modelled through the scaled quantum mechanical (SQM) force field of the cyclic formic acid dimer. The results indicate that the SQM force field technique is very well applicable to hydrogen bonded molecules. The frequency shifts observed on hydrogen bonding can be related to the shifts observed on lowering the temperature. This study also confirms that a clear distinction between cyclic carboxylic acid dimers and catamers can be made through the difference between infrared and Raman frequencies, and it is proved here that these conditions are also valid for weaker hydrogen bonded cyclic carboxylic acid dimers.  相似文献   

11.
The reaction of the bifunctional organic molecule 1-(dimethylamino)-2-propyne (DMAP) on the Si(100) surface has been investigated by density functional calculations employing a two-dimer cluster model. We found that, once in the physisorbed dative bonded well (-20.0 kcal mol(-1)), DMAP can proceed via a number of pathways, involving the formation of Si-C sigma bonds, which lead to thermodynamically more stable configurations. We first considered the cycloaddition of the CC triple bond, leading to a Si-C di-sigma bonded product (-58.7 kcal mol(-1)), for which we computed an energy barrier of only 12.5 kcal mol(-1), consistently with the observed switching of DMAP adsorption linkage at 300 K. We also explored the dissociative pathway involving the methylene C-H bond cleavage on the dative bonded DMAP, leading to three adsorption products with one (-57.3 kcal mol(-1)) and three Si-C sigma bonds (-58.7 and -60.6 kcal mol(-1)). The energy barrier for this pathway is computed 24.7 kcal mol(-1) and may therefore compete at temperature above 300 K with the reaction pathway involving the addition of the alkyne unit.  相似文献   

12.
Three novel pyridine functionalized N‐heterocyclic silanes, bearing chloride and azide moieties, were synthesized and characterized by NMR spectroscopy (1H, 13C, 29Si), mass spectrometry, elemental analysis, and single‐crystal XRD. The molecular structures show a comparably strong dative interaction of the pyridine‐N with the Si center, formally inducing a penta‐coordination arrangement at the silicon(IV). Under appropriate conditions, the silylazides, presented in this work, might be able to thermo‐ or photolytically liberate gaseous nitrogen giving rise to a promising synthetic option to access a variety of new transition metal silylene complexes with potential applications in various catalytic reactions.  相似文献   

13.
The binding configuration of propylene glycol stereoisomer molecules adsorbed on the Si(001)-2×1 surface was investigated using a combination of scanning tunneling microscopy (STM) and density functional theory calculations. Propylene glycol was found to adsorb dissociatively via two hydroxyl groups exclusively as a bridge between the ends of two adjacent dimers along the dimer row. The chirality was preserved during bonding to Si atoms and was identifiable with STM imaging. The large number of propylene glycol conformers in the gas phase was reduced to a single configuration adsorbed on the surface at low molecular coverage.  相似文献   

14.
The structure of methyl silatrane is investigated by gas-phase electron diffraction at 185° C. The molecule possesses C3v symmetry. The result obtained for the Si—N distance (2.45(5) Å) indicates essentially no dative bonding between Si and N in the gas phase. This result is quite different from the solid-state result which indicates a Si←N dative bond length of 2.175(4) Å. Other structural parameters compare favorably with both the solid state results and with values obtained in the gas phase for similar molecules.  相似文献   

15.
Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.  相似文献   

16.
We study the influence of germanium atoms upon molecular hydrogen desorption energetics using density functional cluster calculations. A three-dimer cluster is used to model the Si((1-x))Ge(x)(100)-(2x1) surface. The relative stabilities of the various monohydride and clean surface configurations are computed. We also compute the energy barriers for desorption from silicon, germanium, and mixed dimers with various neighboring configurations of silicon and germanium atoms. Our results indicate that there are two desorption channels from mixed dimers, one with an energy barrier close to that for desorption from germanium dimers and one with an energy barrier close to that for desorption from silicon dimers. Coupled with the preferential formation of mixed dimers over silicon or germanium dimers on the surface, our results suggest that the low barrier mixed dimer channel plays an important role in hydrogen desorption from silicon-germanium surfaces. A simple kinetics model is used to show that reasonable thermal desorption spectra result from incorporating this channel into the mechanism for hydrogen desorption. Our results help to resolve the discrepancy between the surface germanium coverage found from thermal desorption spectra analysis, and the results of composition measurements using photoemission experiments. We also find from our cluster calculations that germanium dimers exert little influence upon the hydrogen desorption barriers of neighboring silicon or germanium dimers. However, a relatively larger effect upon the desorption barrier is observed in our calculations when germanium atoms are present in the second layer.  相似文献   

17.
The wear of perfluoropolyether (PFPE) lubricants applied on Si(100) and an Au film on Si(100) substrate at ultralow loads was investigated by using atomic force microscopy (AFM)-based surface potential and resistance measurements. Surface potential data is used in detecting lubricant removal and the initiation of wear on the silicon substrate. The surface potential change is attributed to the change in the work function of the silicon after wear, and electrostatic charge build-up of debris in the lubricant. It was found that coatings that are partially bonded, i.e., containing a mobile lubricant fraction, were better able to protect the silicon substrate from wear compared to the fully bonded coating. This enhanced protection is attributed to a lubricant replenishment mechanism. However, an untreated lubricant coating exhibited considerable wear as it contains a smaller amount of lubricant bonded to the substrate relative to the partially bonded and fully bonded coatings. A sample subjected to shear is shown to have improved wear resistance, and this enhancement is attributed to chain reorientation and alignment of the lubricant molecules. The detection of wear of PFPE lubricants on Au by an AFM-based resistance measurement method is demonstrated for the first time. This technique provides complementary information to surface potential data in detecting substrate exposure after wear and is a promising method for studying the wear of conducting films.  相似文献   

18.
Understanding the chemical reaction mechanisms governing how small organic molecules attach to semiconductor surfaces can lead to new strategies for creating specific surface patterns such as single adduct monolayers. In this study, room-temperature ab initio molecular dynamics simulations of one and two 1,3-cyclohexadiene (CHD) molecule(s) reacting with the Si(100)-2x1 surface reveal that adducts form via a carbocation-mediated two-step mechanism. Dimer flipping can either promote or prevent bond formation depending on how the CHD approaches. CHDs often travel past several Si dimers before finding the proper local environment. The resulting intermediate can persist for more than 4 ps, allowing the second bond to form with any adjacent Si dimer. The additional reactive site accounts for a large portion of the discrepancy between the predicted thermodynamic and observed experimental product distribution. Surface adducts protect a 5.6 A region, direct unbound CHD exploration, and can cause adjacent dimers to flip.  相似文献   

19.
Recently, some works have focused attention on the reactivity of the silicon atom with closed-shell molecules. With CO, silicon may form a few relatively stable compounds, i.e., Si(CO), Si(CO)(2), and Si[C(2)O(2)], while the existence of polycarbonyl (n > 2) silicon complexes has been rejected by current literature. In this paper, the reaction of silicon with carbonyl has been reinvestigated by density functional calculations. It has been found that the tetracoordinated planar Si(CO)(4) complex is thermodynamically stable. In Si(CO), silicon carbonyl, and Si(CO)(2), silicon dicarbonyl, the CO moieties are datively bonded to Si, and Si[C(2)O(2)], c-silicodiketone, is similar to the compounds formed by silicon and ethylene; Si(CO)(4), silicon tetracarbonyl, may be viewed as a resonance between the extreme configurations (CO)(2)Si + 2CO and 2CO + Si(CO)(2). A detailed orbital analysis has shown that the Si bonding with four CO is consistent with the use of sp(2)d-hybridized orbitals on silicon, giving rise to a planar structure about Si.  相似文献   

20.
Indirect adsorbate-adsorbate interactions between adsorbed ammonia (NH3) molecules on the Si(100) surface are investigated using density functional theory. Two different nonlocal effects mediated through the surface electronic structure are observed: "poisoning" and hydrogen bonding. We find that adsorbed NH3 "poisons" adsorption of NH3 on neighboring Si dimers on the same side of the dimer row whereas neighboring NH2(a) groups favor this configuration. Adsorption of NH3 involves charge transfer to the surface that localizes on neighboring Si dimer atoms, preventing adsorption of NH3 at these sites. These indirect interactions are similar to Friedel-type interactions observed on metal surfaces with an estimated range of less than 7.8 A on the Si(100) surface. These interactions may be manipulated to construct local ordering of the adsorbates on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号