首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanistic questions concerning palladium and norbornene catalyzed aryl-aryl coupling reactions are treated in this paper: how aryl halides react with the intermediate palladacycles, formed by interaction of the two catalysts with an aryl halide, and what is the rational explanation of the "ortho effect" (caused by an ortho substituent in the starting aryl halide), which leads to aryl-aryl coupling with a second molecule of aryl halide rather than to aryl-norbornyl coupling. Two possible pathways have been proposed, one involving aryl halide oxidative addition to the palladacycle, the other passing through a palladium(II) transmetalation, also involving the palladacycle, as previously proposed by Cardenas and Echavarren. Our DFT calculations using M06 show that, in palladium-catalyzed reaction of aryl halides, not containing ortho substituents, and norbornene, the intermediate palladacycle formed has a good probability to undergo transmetalation, energetically favored over the oxidative addition leading to Pd(IV). The unselective sp(2)-sp(2) and sp(2)-sp(3) coupling, experimentally observed in this case, can be explained in the framework of the transmetalation pathway since the energetic difference between aryl attack onto the aryl or norbornyl carbon of the palladacycle intermediate is quite small. On the other hand, according to the experimentally observed "ortho effect", selective aryl-aryl coupling only occurs in the reactions of ortho-substituted metallacycles. The present work offers the first possible rationalization of this finding. These in situ formed palladacycles containing an ortho substituent could more easily undergo oxidative addition of an aryl halide rather than reductive elimination from the transmetalation intermediate as a result of a steric clash in the transition state of the latter. The now energetically accessible Pd(IV) intermediate, featuring a Y-distorted trigonal bipyramidal structure, can account for the reported selective aryl-aryl coupling through a reductive elimination which is easier than aryl-norbornyl coupling. Thus, the steric effect represents the main factor that dictates the energetic convenience of the system to follow the Pd(IV) or the transmetalation pathway. Ortho substituents cause a higher energy transition state for reductive elimination from the transmetalation intermediate than for oxidative addition to the metallacycle palladium(II) and the pathway based on the latter predominates.  相似文献   

2.
Aryl tosylates are attractive substrates for Pd-catalyzed cross-coupling reactions, but they are much less reactive than the more commonly used aryl triflates. We report the oxidative addition of aryl tosylates to Pd(PPF-t-Bu)[P(o-tolyl)3] and to Pd(CyPF-t-Bu)[P(o-tolyl)3] at room temperature to produce the corresponding palladium(II) aryl tosylate complexes. In the presence of added bromide ions, arylpalladium(II) bromide complexes were formed. The rate of oxidative addition was accelerated by addition of either coordinating or weakly coordinating anions, and the reactions were faster in more polar solvents. The mild conditions for oxidative addition allowed for the development of Pd-catalyzed Kumada couplings and amination reactions of unactivated aryl tosylates at room temperature. The catalysts for these mild couplings of aryl tosylates were generated from palladium precursors and the sterically hindered Josiphos-type ligands that induced oxidative addition of aryl tosylates to Pd(0) at room temperature.  相似文献   

3.
Pd‐catalyzed oxidative coupling reaction was of great importance in the aromatic C? H activation and the formation of new C? O and C? C bonds. Sanford has pioneered practical, directed C? H activation reactions employing Pd(OAc)2 as catalyst since 2004. However, until now, the speculated reactive Pd(IV) transient intermediates in these reactions have not been isolated or directly detected from reaction solution. Electrospray ionization tandem mass spectrometry (ESI‐MS/MS) was used to intercept and characterize the reactive Pd(IV) transient intermediates in the solutions of Pd(OAc)2‐catalyzed oxidative coupling reactions. In this study, the Pd(IV) transient intermediates were detected from the solution of Pd(OAc)2‐catalyzed oxidative coupling reactions by ESI‐MS and the MS/MS of the intercepted Pd(IV) transient intermediate in reaction system was the same with the synthesized authentic Pd(IV) complex. Our ESI‐MS(/MS) studies confirmed the presence of Pd(IV) reaction transient intermediates. Most interestingly, the MS/MS of Pd(IV) transient intermediates showed the reductive elimination reactivity to Pd(II) complexes with new C? O bond formation into product in gas phase, which was consistent with the proposed reactivity of the Pd(IV) transient intermediates in solution.  相似文献   

4.
The aminophosphine-based pincer complexes [C6H3-2,6-(XP(piperidinyl)2)2Pd(Cl)] (X=NH 1; X=O 2) are readily prepared from cheap starting materials by sequential addition of 1,1',1'-phosphinetriyltripiperidine and 1,3-diaminobenzene or resorcinol to solutions of [Pd(cod)(Cl)2] (cod=cyclooctadiene) in toluene under N2 in "one pot". Compounds 1 and 2 proved to be excellent Heck catalysts and allow the quantitative coupling of several electronically deactivated and sterically hindered aryl bromides with various olefins as coupling partners at 140 degrees C within very short reaction times and low catalyst loadings. Increased reaction temperatures also enable the efficient coupling of olefins with electronically deactivated and sterically hindered aryl chlorides in the presence of only 0.01 mol % of catalyst. The mechanistic studies performed rule out that homogeneous Pd 0 complexes are the catalytically active forms of 1 and 2. On the other hand, the involvement of palladium nanoparticles in the catalytic cycle received strong experimental support. Even though pincer-type Pd IV intermediates derived from 1 (and 2) are not involved in the catalytic cycle of the Heck reaction, their general existence as reactive intermediates (for example, in other reactions) cannot be excluded. On the contrary, they were shown to be thermally accessible. Compounds 1 and 2 show a smooth halide exchange with bromobenzene to yield their bromo derivatives in DMF at 100 degrees C. Experimental observations revealed that the halide exchange most probably proceeded via pincer-type Pd IV intermediates. DFT calculations support this hypothesis and indicated that aminophosphine-based pincer-type Pd IV intermediates are generally to be considered as reactive intermediates in reactions with aryl halides performed at elevated temperatures.  相似文献   

5.
A series of monomeric arylpalladium(II) complexes LPd(Ph)X (L = 1-AdPtBu2, PtBu3, or Ph5FcPtBu2 (Q-phos); X = Br, I, OTf) containing a single phosphine ligand have been prepared. Oxidative addition of aryl bromide or aryl iodide to bis-ligated palladium(0) complexes of bulky, trialkylphosphines or to Pd(dba)2 (dba = dibenzylidene acetone) in the presence of 1 equiv of phosphine produced the corresponding arylpalladium(II) complexes in good yields. In contrast, oxidative addition of phenyl chloride to the bis-ligated palladium(0) complexes did not produce arylpalladium(II) complexes. The oxidative addition of phenyl triflate to PdL2 (L = 1-AdPtBu2, PtBu3, or Q-phos) also did not form arylpalladium(II) complexes. The reaction of silver triflate with (1-AdPtBu2)Pd(Ph)Br furnished the corresponding arylpalladium(II) triflate in good yield. The oxidative addition of phenyl bromide and iodide to Pd(Q-phos)2 was faster than oxidative addition to Pd(1-AdPtBu2)2 or Pd(PtBu3)2. Several of the arylpalladium complexes were characterized by X-ray diffraction. All of the arylpalladium(II) complexes are T-shaped monomers. The phenyl ligand, which has the largest trans influence, is located trans to the open coordination site. The complexes appear to be stabilized by a weak agostic interaction of the metal with a ligand C-H bond positioned at the fourth-coordination site of the palladium center. The strength of the Pd.H bond, as assessed by tools of density functional theory, depended upon the donating properties of the ancillary ligands on palladium.  相似文献   

6.
A series of new ethylene-bridged bis(imidazolium) halides with various N-substitutions were synthesized. Complexation of these imidazolium halides with Pd(OAc)2 produced new Pd(II) ethylene-bridged bis(carbene) complexes. Crystallographic analyses of some of the new imidazolium salts and Pd(II) complexes were determined. Applications of these seven-member palladacycles in Suzuki and Heck coupling reactions produced comparable catalytic activities to those of six-member analogs.  相似文献   

7.
Oxidation of binuclear Pd(II) complexes with PhICl(2) or PhI(OAc)(2) has previously been shown to afford binuclear Pd(III) complexes featuring a Pd-Pd bond. In contrast, oxidation of binuclear Pd(II) complexes with electrophilic trifluoromethylating ("CF(3)(+)") reagents has been reported to afford mononuclear Pd(IV) complexes. Herein, we report experimental and computational studies of the oxidation of a binuclear Pd(II) complex with "CF(3)(+)" reagents. These studies suggest that a mononuclear Pd(IV) complex is generated by an oxidation-fragmentation sequence proceeding via fragmentation of an initially formed, formally binuclear Pd(III), intermediate. The observation that binuclear Pd(III) and mononuclear Pd(IV) complexes are accessible in the same reactions offers an opportunity for understanding the role of nuclearity in both oxidation and subsequent C-X bond-forming reactions.  相似文献   

8.
The reaction of cationic platinum aqua complexes 2 [Pt(C(6)H(2)[CH(2)NMe(2)](2)-E-4)(OH(2))](X') (X' = SO(3)CF(3), BF(4)) with alkyl halides RX gave various air-stable arenium complexes 3-5 containing a new C-C bond (R = Me, 3; Et, 4; Bn, 5). Electron-releasing oxo-substituents on the aromatic ligand (E = e.g., OH, b; OMe, c) enhance the reactivity of the aqua complex 2 and were essential for arenium formation from alkyl halides different from MeX. This process is initiated by oxidative addition of alkyl halides to the platinum(II) center of 2, which affords (alkyl)(aryl) platinum(IV) complexes (e.g., 9, alkyl = benzyl) as intermediates. Spectroscopic analyses provided direct evidence for a subsequent reversible 1,2-sigmatropic shift of the alkyl group along the Pt-C(aryl) bond, which is identical to repetitive C(arenium)-C(alkyl) bond making and breaking and concerted metal reduction and oxidation. Temperature-dependent NMR spectroscopy revealed DeltaH degrees = -1.3 (+/- 0.1) kJ mol(-1), DeltaS degrees = +3.8 (+/- 0.2) J mol(-1) K(-1), and DeltaG degrees (298) = -2.4 (+/- 0.1) kJ mol(-1) for the formation of the arenium complex 5b from 9 involving the migration of a benzyl group. The arenium complexes were transformed to cyclohexadiene-type addition products 7 or to demetalated alkyl-substituted arenes, 8, thus completing the platinum-mediated formation of a sp(2)-sp(3) C-C bond which is analogous to the aromatic substitution of a [PtX](+) unit by an alkyl cation R(+). The formation of related trimethylsilyl arenium complexes 6 suggests arenium complexes as key intermediates, not only in (metal-mediated) sp(2)-sp(3) C-C bond making and breaking but also in silyl-directed cyclometalation.  相似文献   

9.
Aryl triflates were transformed to aryl bromides/iodides simply by treating them with LiBr/NaI and [Cp*Ru(MeCN)(3)]OTf. The ruthenium complex also catalyzed the transformation of alkenyl sulfonates and phosphates to alkenyl halides under mild conditions. Aryl and alkenyl triflates undergo oxidative addition to a ruthenium(II) complex to form η(1)-arylruthenium and 1-ruthenacyclopropene intermediates, respectively, which are transformed to the corresponding halides.  相似文献   

10.
Electrospray ionization mass spectrometry (ESI-MS) was used as a means to directly identify catalytic cationic organopalladium species in ligand-controlled Heck reactions involving electron-rich olefins and different Pd-sources. In these high-temperature Heck arylations, the oxidative addition intermediates were observed as bidentate ligand chelated cationic aryl palladium species, suggesting that the used ligand attaches to the metal center at the very beginning of the catalytic cycle. This was also in agreement with the obtained regioisomeric profile of the isolated products. The investigation supports the standard Pd(0)/Pd(II) Heck mechanism and provides further insight regarding the conceivable composition of fundamental Pd(II) intermediates in an ongoing Heck reaction.  相似文献   

11.
Palladium‐catalysed cross‐coupling reactions are some of the most frequently used synthetic tools for the construction of new carbon–carbon bonds in organic synthesis. In the work presented, Pd(II) complex catalysts were synthesized from palladium chloride and nitrogen donor ligands as the precursors. Infrared and 1H NMR spectroscopic analyses showed that the palladium complexes were formed in the bidentate mode to the palladium centre. The resultant Pd(II) complexes were tested as catalysts for the coupling of organobismuth(III) compounds with aryl and acid halides leading to excellent yields with high turnover frequency values. The catalysts were stable under the reaction conditions and no degradation was noticed even at 150°C for one of the catalysts. The reaction proceeds via an aryl palladium complex formed by transmetallation reaction between catalyst and Ar3Bi. The whole synthetic transformation has high atom economy as all three aryl groups attached to bismuth are efficiently transferred to the electrophilic partner.  相似文献   

12.
A series of Cu(I)-amido complexes both lacking ancillary ligands and containing 1,10-phenanthroline (phen) as ancillary ligand have been prepared. These complexes react with iodoarenes to form arylamine products, and this reactivity is consistent with the intermediacy of such complexes in catalytic Ullmann amination reactions. The stoichiometric reactions of the Cu(I)-amido complexes with iodoarenes are autocatalytic, with the free CuI generated during the reaction serving as the catalyst. Such autocatalytic behavior was not observed for reactions of iodoarenes with copper(I) amidates, imidates, or phenoxides. The selectivity of these complexes for two sterically distinct aryl halides under various conditions imply that the autocatalytic reaction proceeds by forming highly reactive [CuNPh(2)](n) lacking phen. Reactions with radical probes imply that the reactions of phen-ligated Cu(I)-amido complexes with iodoarenes occur without the intermediacy of aryl radicals. Density functional theory calculations on the oxidative addition of iodoarenes to Cu(I) species are consistent with faster reactions of iodoarenes with CuNPh(2) species lacking phen in DMSO than reactions of iodoarenes with LCuNPh(2) in which L = phen. The free-energy barrier computed for the reaction of PhI with (DMSO)CuNPh(2) was 21.8 kcal/mol, while that for the reaction of PhI with (phen)CuNPh(2) was 33.4 kcal/mol.  相似文献   

13.
Palladium complexes supported by (o-biphenyl)P(t-Bu)(2) (3) or (o-biphenyl)PCy(2) (4) are efficient catalysts for the catalytic amination of a wide variety of aryl halides and triflates. Use of ligand 3 allows for the room-temperature catalytic amination of many aryl chloride, bromide, and triflate substrates, while ligand 4 is effective for the amination of functionalized substrates or reactions of acyclic secondary amines. The catalysts perform well for a large number of different substrate combinations at 80-110 degrees C, including chloropyridines and functionalized aryl halides and triflates using 0.5-1.0 mol % Pd; some reactions proceed efficiently at low catalyst levels (0.05 mol % Pd). These ligands are effective for almost all substrate combinations that have been previously reported with various other ligands, and they represent the most generally effective catalyst system reported to date. Ligands 3 and 4 are air-stable, crystalline solids that are commercially available. Their effectiveness is believed to be due to a combination of steric and electronic properties that promote oxidative addition, Pd-N bond formation, and reductive elimination.  相似文献   

14.
In the Heck reaction between aryl halides and n-butyl acrylate, the palladacycle {Pd[kappa(1)-C, kappa(1)-N-C=(C(6)H(5))C(Cl)CH(2)NMe(2)](mu-Cl)}(2), 1, is merely a reservoir of the catalytically active Pd(0) species [1](Pd colloids or highly active forms of low ligated Pd(0) species) that undergoes oxidative addition of the aryl halide on the surface with subsequent detachment, generating homogeneous Pd(II) species. The main catalytic cycle is initiated by oxidative addition of iodobenzene to [1], followed by the reversible coordination of the olefin to the oxidative addition product. All the unimolecular subsequent steps are indistinguishable kinetically and can be combined in a single step. This kinetic model predicts that a slight excess of alkene relative to iodobenzene leads to a rapid rise in the Pd(0) concentration while when using a slight excess of iodobenzene, relative to alkene, the oxidative addition product is the resting state of the catalytic cycle. Competitive experiments of various bromoarenes and iodoarenes with n-butyl acrylate catalyzed by 1 and CS, CP, and NCN palladacycles gave the same rho value (2.4-2.5 for Ar-Br and 1.7-1.8 for Ar-I) for all palladacycles employed, indicating that they generate the same species in the oxidative addition step. The excellent fit of the slope with the sigma(0) Hammett parameter and the entropy of activation of -43 +/- 8 J mol(-1) K(-1) are consistent with an associative process involving the development of only a partial charge in the transition state for the oxidative step of iodobenzene.  相似文献   

15.
A series of well-defined, air- and moisture-stable (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes has been used in several catalytic reactions: Suzuki-Miyaura cross-coupling, catalytic dehalogenation of aryl halides, and aryl amination. The scope of the three processes using various substrates was examined. A general system involving the use of (IPr)Pd(allyl)Cl as catalyst and NaO(t)Bu as base has proven to be highly active for the Suzuki-Miyaura cross-coupling of activated and unactivated aryl chlorides and bromides, for the catalytic dehalogenation of aryl chlorides, and for the catalytic aryl amination of aryl triflates. All reactions proceed in short reaction times and at mild temperatures. The system has also proven to be compatible with the microwave-assisted Suzuki-Miyaura cross-coupling and catalytic dehalogenation processes, affording yields similar to those of the conventionally heated analogous reactions.  相似文献   

16.
Two Pd(II)–NHC complexes bearing benzimidazole and pyridine groups have been successfully prepared and fully characterized by NMR and X‐ray diffraction analysis. The structure of palladium complexes are a typical square‐planar with palladium surrounded by two pairs of trans‐arranged benzimidazole and carbene ligands. The Pd–NHC complexes have been proved to be a highly efficient catalyst for the Mizoroki–Heck coupling reaction of aryl halides with various substituted acrylates under mild conditions in excellent yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Aminocarbonylation of aryl halides, homogeneously catalysed by palladium, is an efficient method that can be employed for obtaining amides for pharmaceutical and synthetic applications. In this work, palladium (II) complexes containing P^N ligands were studied as catalysts in the aminocarbonylation of iodobenzene in the presence of diethylamine. Two types of systems were used: a palladium (II) complex formed in situ; and one prepared prior to the catalytic reaction. In general, the palladium complexes studied achieved high conversions in an average reaction time of less than 2 hr, which is less than that for the standard system (Pd (II)/PPh3) used. The pre‐synthesized complexes were faster than their in situ counterparts, as the latter require an induction time to form the Pd/P^N species. The structure and electronic properties of the ligand P^N can influence both the activity and the selectivity of the reaction, stabilizing the acyl‐palladium intermediates formed in a better manner.  相似文献   

18.
The Stille coupling of organostannanes and organohalides, mediated by air and moisture stable palladium(II) phosphine complexes containing succinimide or phthalimide (imidate) ligands, has been investigated. An efficient synthetic route to several palladium(II) complexes containing succinimide and phthalimide ligands, has been developed. cis-Bromobis(triphenylphosphine)(N-succinimide)palladium(II) [(Ph3P)2Pd(N-Succ)Br] is shown to mediate the Stille coupling of allylic and benzylic halides with alkenyl, aryl and allyl stannanes. In competition experiments between 4-nitrobromobenzene and benzyl bromide with a cis-stannylvinyl ester, (Ph3P)2Pd(N-Succ)Br preferentially cross-couples benzyl bromide, whereas with other commonly employed precatalysts 4-nitrobromobenzene undergoes preferential cross-coupling. Furthermore, preferential reaction of deactivated benzyl bromides over activated benzyl bromides is observed for the first time. The type of halide and presence of a succinimide ligand are essential for effective Stille coupling. The type of phosphine ligand is also shown to alter the catalytic activity of palladium(II) succinimide complexes.  相似文献   

19.
Bridged N,N′-substituted bisbenzimidazolium bromide salts (L1, L2, and L3) were synthesized and fully characterized. Reactions of palladium acetate with L1, L2, and L3 afforded corresponding new bridged bis(N-heterocyclic carbene)palladium(II) complexes (C1, C2, and C3) in high yields. The X-ray structure of complex C1 showed that the Pd(II) ion is bonded to the two carbon atoms of the bis(N-heterocyclic carbene) and two bromido ligands are in the cis position, resulting in a distorted square planar geometry. The three Pd(NHC)2Br2 complexes C1, C2, and C3 were evaluated in carbonylative Suzuki–Miyaura coupling reactions of aryl boronic acids with aryl halides and displayed high catalytic activity with low catalyst loading. The coupling reactions of aryl bromides were selective towards the carbonylation product at higher carbon monoxide pressure.  相似文献   

20.
The reaction of [PdCl2(CH3CN)2] and N(4)‐substituted phenylaminoacetohydrazone ligands (LH) in methanol at room temperature afforded air‐ and moisture‐stable palladium(II) complexes of two types with general formulae [Pd(LH)Cl] and [Pd2(LH)(L)]Cl. An unusual coordination mode of ligand LH is observed, in which the ligand coordinates through N(4)H nitrogen and without enolization of the carbonyl group of the hydrazone moiety in both mono‐ and bimetallic complexes. The crystal structure of the complexes reveals that the oxime LH reacts with [PdCl2(CH3CN)2] presumably via the elimination of HCl from hydrazine NH. All the synthesized Pd(II) complexes were evaluated as catalysts in the Suzuki cross‐coupling reaction of aryl halides, activated 4‐bromoacetophenone and non‐activated bromobenzene, with phenylboronic acid in aqueous medium. In both cases, i.e. with activated and non‐activated aryl halides, all the complexes show moderate conversion leading to biaryls with yields in the range 50–65%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号