首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary.   The collocation tension spline is considered as a numerical solution of a singularly perturbed two-point boundary value problem: . The collocation points are chosen as a generalization of the classical Gaussian points. Unlike the traditional approach, we employ the B-spline representation in the analysis. This leads to global quadratic convergence of the method for small perturbation parameters, and, for large values, the order of convergence is four. Received October 4, 1996 / Revised version received September 23, 1999 / Published online October 16, 2000  相似文献   

2.
Summary For the numerical solution of two-point boundary value problems a shooting algorithm based on a Taylor series method is developed. Series coefficients are generated automatically by recurrence formulas. The performance of the algorithm is demonstrated by solving six problems arising in nonlinear shell theory, chemistry and superconductivity.  相似文献   

3.
In the present paper we shall consider an application of simple non-polynomial splines to a numerical solution of a weakly singular two-point boundary value problem:x (x y)=f(x,y), (0<x1) subject toy(0)=0,y(1)=c 1(1) ory(0)=c 2,y(1)=c 3(0<<1). Our collocation method gives a continuously differentiable approximation and isO(h 2)-convergent.  相似文献   

4.
Recently, Chawla et al. described a second order finite difference method for the class of singular two-point boundary value problems:
  相似文献   

5.
6.
Summary A new method for solving nonlinear boundary value problems based on Taylor-type expansions generated by the use of Lie series is derived and applied to a set of test examples. A detailed discussion is given of the comparative performance of this method under various conditions. The method is of theoretical interest but is not applicable, in its present form, to real life problems; in particular, because of the algebraic complexity of the expressions involved, only scalar second order equations have been discussed, though in principle systems of equations could be similarly treated. A continuation procedure based on this method is suggested for future investigation.  相似文献   

7.
Summary A method of a collocation type based onC 0-piecewise polynomial spaces is presented for a two-point boundary value problem of the second order. The method has an optimal order of convergence under smoothness requirements on the exact solution which are weaker than forC 1-collocation methods. If the differential operator is symmetric, a modification of this method leads to a symmetric system of linear equations. It is shown that if the collocation solution is a piecewise polynomial of degree not greater thanr, the method is stable and convergent with orderh r inH 1-norm. A similar symmetric modification forC 0-colloction-finite element method [7] is also obtained. Superconvergence at the nodes is established.  相似文献   

8.
Summary In the first part of this paper we are dealing with theoretical statements and conditions which lead to existence and uniqueness of the solution of a nonlinear boundary value problem with delay. Next we apply this method successfully to a numerical example. The computations have been carried out at the computer Siemens 4004. The data obtained are presented in two tables.  相似文献   

9.
A numerical method based on B-spline is developed to solve the general nonlinear two-point boundary value problems up to order 6. The standard formulation of sextic spline for the solution of boundary value problems leads to non-optimal approximations. In order to derive higher orders of accuracy, high order perturbations of the problem are generated and applied to construct the numerical algorithm. The error analysis and convergence properties of the method are studied via Green’s function approach. O(h6) global error estimates are obtained for numerical solution of these classes of problems. Numerical results are given to illustrate the efficiency of the proposed method. Results of numerical experiments verify the theoretical behavior of the orders of convergence.  相似文献   

10.
Using the well known properties of thes-stage implicit Runge-Kutta methods for first order differential equations, single step methods of arbitrary order can be obtained for the direct integration of the general second order initial value problemsy=f(x, y, y),y(x o)=y o,y(x o)=y o. These methods when applied to the test equationy+2y+ 2 y=0, ,0, +>0, are superstable with the exception of a finite number of isolated values ofh. These methods can be successfully used for solving singular perturbation problems for which f/y and/or f/y are negative and large. Numerical results demonstrate the efficiency of these methods.  相似文献   

11.
Summary Singularly perturbed boundary value ordinary differential problems are considered, where the problem defining the reduced solution is singular. For numerical approximation, families of symmetric difference schemes, which are equivalent to certain collocation schemes based on Gauss and Lobatto points, are used. Convergence results, previously obtained for the regular singularly perturbed case, are extended. While Gauss schemes are extended with no change, Lobatto schemes require a small modification in the mesh selection procedure. With meshes as prescribed in the text, highly accurate solutions can be obtained with these schemes for singular singularly perturbed problems at a very reasonable cost. This is demonstrated by examples.This research was completed while the author was visiting the Department of Applied Mathematics, Weizmann Inst., Rehovot, Israel. The author was supported in part under NSERC grant A4306  相似文献   

12.
Summary This paper examines the concepts of feedback and adaptivity for the Finite Element Method. The model problem concernsC 0 elements of arbitrary, fixed degree for a one-dimensional two-point boundary value problem. Three different feedback methods are introduced and a detailed analysis of their adaptivity is given.Dedicated to F.L. Bauer on the occasion of his 60th birthdayThis research was partially supported by the Office of Naval Research under grant number N00014-77-C-0623  相似文献   

13.
Septic spline is used for the numerical solution of the sixth-order linear, special case boundary value problem. End conditions for the definition of septic spline are derived, consistent with the sixth-order boundary value problem. The algorithm developed approximates the solution and their higher-order derivatives. The method has also been proved to be second-order convergent. Three examples are considered for the numerical illustrations of the method developed. The method developed in this paper is also compared with that developed in [M. El-Gamel, J.R. Cannon, J. Latour, A.I. Zayed, Sinc-Galerkin method for solving linear sixth order boundary-value problems, Mathematics of Computation 73, 247 (2003) 1325–1343], as well and is observed to be better.  相似文献   

14.
Summary In this paper we discuss the construction of a spline function for a class of singular two-point boundary value problemx (x u)=f (x, u),u(0)=A,u(1)=B, 0<<1 or =1,2. The boundary conditions may also be of the formu(0)=0,u(1)=B. Three point finite difference methods, using the above splines, are obtained for the solution of the boundary value problem. These methods are of second order and are illustrated by four numerical examples.  相似文献   

15.
Summary For certain nonlinear two-point boundary value problems of the fourth order an estimation theory is developed which yields simultaneous estimates of the solution and its second derivative. Methods for computing numerical error bounds for approximate solutions are described and tested. The theory provides also uniqueness and existence statements. The results can be applied to many problems for which a corresponding theory on two-sided bounds is not suitable.  相似文献   

16.
A method is described based on auniform mesh for the singular two-point boundary value problem:y+(/x)y+f(x, y)=0, 0<x1,y(0)=0,y(1)=A, and it is shown to be orderh 2 convergent forall 1.  相似文献   

17.
Summary We discuss the construction of three-point finite difference approximations and their convergence for the class of singular two-point boundary value problems: (x y)=f(x,y), y(0)=A, y(1)=B, 0<<1. We first establish a certain identity, based on general (non-uniform) mesh, from which various methods can be derived. To obtain a method having order two for all (0,1), we investigate three possibilities. By employing an appropriate non-uniform mesh over [0,1], we obtain a methodM 1 based on just one evaluation off. For uniform mesh we obtain two methodsM 2 andM 3 each based on three evaluations off. For =0,M 1 andM 2 both reduce to the classical second-order method based on one evaluation off. These three methods are investigated, theirO(h 2)-convergence established and illustrated by numerical examples.  相似文献   

18.
Summary. We present symmetric collocation methods for linear differential-algebraic boundary value problems without restrictions on the index or the structure of the differential-algebraic equation. In particular, we do not require a separation into differential and algebraic solution components. Instead, we use the splitting into differential and algebraic equations (which arises naturally by index reduction techniques) and apply Gau?-type (for the differential part) and Lobatto-type (for the algebraic part) collocation schemes to obtain a symmetric method which guarantees consistent approximations at the mesh points. Under standard assumptions, we show solvability and stability of the discrete problem and determine its order of convergence. Moreover, we show superconvergence when using the combination of Gau? and Lobatto schemes and discuss the application of interpolation to reduce the number of function evaluations. Finally, we present some numerical comparisons to show the reliability and efficiency of the new methods. Received September 22, 2000 / Revised version received February 7, 2001 / Published online August 17, 2001  相似文献   

19.
Summary We examine the problem:u+a(x)ub(x)u=f(x) for 0<x<1,a(x)>0,b(x)>, 2 = 4>0,a, b andf inC 2 [0, 1], in (0, 1],u(0) andu(1) given. Using finite elements and a discretized Green's function, we show that the El-Mistikawy and Werle difference scheme on an equidistant mesh of widthh is uniformly second order accurate for this problem (i.e., the nodal errors are bounded byCh 2, whereC is independent ofh and ). With a natural choice of trial functions, uniform first order accuracy is obtained in theL (0, 1) norm. On choosing piecewise linear trial functions (hat functions), uniform first order accuracy is obtained in theL 1 (0, 1) norm.  相似文献   

20.
Summary The numerical solution of a nonlinear singularly perturbed two-point boundary value problem is studied. The developed method is based on Hermitian approximation of the second derivative on special discretization mesh. Numerical examples which demonstrate the effectiveness of the method are presented.This research was partly supported by NSF and SIZ for Science of SAP Vojvodina through funds made available to the U.S.-Yugoslav Joint Board on Scientific and Technological Cooperation (grants JF 544, JF 799)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号