首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The straightforward synthesis of a series of 3‐cyanoformazanate boron difluoride dyes is reported. Phenyl, 4‐methoxyphenyl and 4‐cyanophenyl N‐substituted derivatives were isolated and characterized by single‐crystal X‐ray crystallography, cyclic voltammetry, and UV/Vis spectroscopy. The compounds were demonstrated to possess tunable, substituent‐dependent absorption, emission, and electrochemical properties, which were rationalized through electronic structure calculations.  相似文献   

2.
3.
Ammonolysis of 1,2‐bis[dichloro(methyl)silyl]ethane afforded a crystalline tricyclic silazane along with polymeric material. The crystalline material could be isolated in pure state. It was analyzed by 1H, 13C, 15N and 29Si NMR spectroscopy in solution, by 13C, 15N and 29Si MAS NMR spectroscopy in the solid state, as well as by single‐crystal and powder X‐ray diffraction. The title compound exists as a single isomer in solution, whereas in the solid state the presence of several modifications is indicated, in particular by the solid‐state MAS NMR spectra.  相似文献   

4.
The 2‐tert‐butyl, 2‐phenoxy, and 2‐diethylamino derivatives of 1,3‐bis(trimethylsilyl)‐1,3,2‐diazaphospha‐[3]ferrocenophane were prepared, and the molecular structure of the latter was determined by X‐ray diffraction. The phosphines could be oxidized by their slow reactions with sulfur or selenium, and the molecular structures of three sulfides and one selenide were determined. In contrast, the synthesis of oxides was less straightforward. All new compounds were characterized in solution by multinuclear magnetic resonance methods (1D and 2D 1H, 13C, 15N, 29Si, 31P, and 77Se NMR spectroscopy).  相似文献   

5.
In this contribution the synthesis and full structural as well as spectroscopic characterization of three 5‐(1,2,4‐triazol‐3‐yl)tetrazoles along with selected energetic moieties like nitro, nitrimino, and azido groups are presented. The main goal is a comparative study on the influence of those variable energetic moieties on structural and energetic properties. A complete characterization including IR and Raman as well as multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and reveal insights into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory and reveal high positive heats of formation for all compounds. The calculated detonation parameters (using the EXPLO5.05 program) are in the range of 8000 m s?1 (8097 m s?1 ( 5 ), 8020 m s?1 ( 6 ), 7874 m s?1 ( 7 )). As expected, the measured impact and friction sensitivities as well as decomposition temperatures strongly depend on the energetic moiety at the triazole ring. The C? C connection of a triazole ring with its opportunity to introduce a large variety of energetic moieties and a tetrazole ring, implying a large energy content, leads to the selective synthesis of primary and secondary explosives.  相似文献   

6.
This study presents the preparation of 5‐azido‐3‐nitro‐1H‐1, 2,4‐triazole ( 1 ) in both good yield and high purity, starting from commercially available chemicals in a three step synthesis. Furthermore, several metal and nitrogen‐rich salts with sodium ( 3 ), potassium ( 4 ), cesium ( 5 ), silver ( 6 ), lead ( 7 ), ammonium ( 8 ), guanidinium ( 9 ), and aminoguanidinium ( 10 ) were prepared by simple acid‐base reactions. All compounds were well characterized by various means, including vibrational (IR, Raman) and multinuclear (1H, 13C, 14N, 15N) NMR spectroscopy, mass spectrometry, and DSC. Additionally the structure of 7 was determined by single‐crystal X‐ray diffraction. The sensitivities towards various outer stimuli (impact, friction, electrostatic discharge) were determined according to BAM standards. The metal salts were tested as potential primary explosives utilizing various preliminary tests.  相似文献   

7.
The synthesis and full structural and spectroscopic characterization of three 5‐(1,2,4‐triazol‐C‐yl)tetrazol‐1‐ol compounds with selected energetic moieties including nitrimino ( 5 ), nitro ( 6 ) and azido ( 7 ) groups are reported. The influence of those energetic moieties as well as the C? C connection of a tetrazol‐1‐ol and a 1,2,4‐triazole on structural and energetic properties has been investigated. All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 5 – 8 were determined in the solid state by single‐crystal X‐ray diffraction. The standard heats of formation were calculated on the CBS‐4M level of theory utilizing the atomization energy method, revealing highly positive values for all compounds. The detonation parameters were calculated with the EXPLO5 program and compared to the common secondary explosive RDX. Additionally, sensitivities towards impact, friction and electrostatic discharge were determined.  相似文献   

8.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

9.
In this contribution, the synthesis and full structural and spectroscopic characterization of five bis‐1,2,4‐triazoles in combination with different energetic moieties like amino, nitro, nitrimino, azido, and dinitromethylene groups is presented. The main goal is a comparative study on the influence of those energetic moieties on the structural and energetic properties. A complete characterization including IR, Raman, and multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and deliver insight into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, the detonation parameters were calculated by using the EXPLO5.05 program. Additionally, the impact as well as the friction sensitivities and the sensitivity against electrostatic discharge were determined. The potential application of the synthesized compounds as energetic material will be studied and evaluated by using the experimentally obtained values for the thermal decomposition, the sensitivity data, and the calculated performance characteristics.  相似文献   

10.
The β‐pyranose isomer of D ‐galactosylamine ( 1 ) formed complexes with three different cobalt(III) fragments. Crystals containing the dication [Co(tren)(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 3 ) showed coordination through the anomeric amino group (N1) and the deprotonated hydroxy group (O2) of the 4C1 β‐pyranose form, which is also the major isomer of free galactosylamine. The cationic complexes [Co(fac‐dien)(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 4 ) and [Co(phen)2(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 5 ) were analysed by NMR spectroscopy and showed the same coordination mode as 3 . In terms of available ligand isomers it was shown that 1 exhibits an anomeric equilibrium in solution of both pyranose and both furanose forms as is typical for the parent glycose, galactose.  相似文献   

11.
New [(N?,N,N?)ZrR2] dialkyl complexes (N?,N,N?=pyrrolyl‐pyridyl‐amido or indolyl‐pyridyl‐amido; R=Me or CH2Ph) have been synthesised and tested as pre‐catalysts for ethene and propene polymerisation in combination with different activators, such as B(C6F5)3, [Ph3C][B(C6F5)4], [HNMe2Ph][B(C6F5)4] or solid AlMe3‐depleted methylaluminoxane (DMAO). Polyethylene (Mw>2 MDa and Mw/Mn = 1.3–1.6) has been produced if pre‐catalysts were activated with 1000 equivalents of DMAO (based on Al) [activity >1000 kgPE (mol[Zr] h mol atm)?1] or by using a higher pre‐catalyst concentration and a mixture of [HNPhMe2][B(C6F5)4] (1 equiv) and AliBu2H (60 equiv). In the case of propene polymerisation, activity has been observed only if pre‐catalysts were treated with an excess of AliBu2H prior to addition of DMAO, which led to highly isotactic polypropylene ([mmmm]>95 %). Neutral pre‐catalysts and ion pairs derived from their activation have been characterised in solution by using advanced 1D and 2D NMR spectroscopy experiments. The detection and rationalisation of intercationic NOEs clearly showed the formation of dimeric species in which some pyrrolyl or indolyl π‐electron density of one unit is engaged in stabilising the metal centre of the other unit, which relegates the counterions in the second coordination sphere. The solid‐state structure of the dimeric indolyl‐pyridyl‐amidomethylzirconium derivative, determined by X‐ray diffraction studies, points toward a weak Zr???η3‐indolyl interaction. It can be hypothesised that the formation of dimeric cationic species hampers monomer coordination (especially of less reactive α‐olefins) and that addition of AliBu2H is crucial to split the homodimers.  相似文献   

12.
An efficient two‐step one‐pot protocol for the synthesis of N‐nitrated trinitroethylamino furazans in an ionic liquid has been developed involving the condensation of aminofurazans with trinitroethanol and the N‐nitration of an intermediate Mannich base. Trinitroethylnitramino derivatives have been synthesized and characterized by multinuclear NMR spectroscopy and X‐ray crystallography. A role of the N,2,2,2‐tetranitroethylamino group for stabilization of the high‐density crystal‐packing motif is described. The performance calculations gave detonation pressures and velocities for the furazan derivatives in a range of about 31–36 GPa and 8330–8745 ms?1, respectively, which makes them competitive energetic materials. Furthermore, due to the positive oxygen balance, the compounds could be potential oxidizers for energetic formulations.  相似文献   

13.
5‐(Tetrazol‐1‐yl)‐2H‐tetrazole ( 1 ), or 1,5′‐bistetrazole, was synthesized by the cyclization of 5‐amino‐1H‐tetrazole, sodium azide and triethyl orthoformate in glacial acetic acid. A derivative of 1 , 2‐methyl‐5‐(tetrazol‐1‐yl)tetrazole ( 2 ) can be obtained by this method starting from 5‐amino‐2‐methyl‐tetrazole. Furthermore, selected salts of 1 with nitrogen‐rich and metal (alkali and transition metal) cations, including hydroxylammonium ( 4 ), triaminoguanidinium ( 5 ), copper(I) ( 8 ) and silver ( 9 ), as well as copper(II) complexes of both 1 and 2 were prepared. An intensive characterization of the compounds is given, including vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, DSC and single‐crystal X‐ray diffraction. Their sensitivities towards physical stimuli (impact, friction, electrostatic) were determined according to Bundesamt für Materialforschung (BAM) standard methods. Energetic performance (detonation velocity, pressure, etc.) parameters were calculated with the EXPLO5 program, based on predicted heats of formation derived from enthalpies computed at the CBS‐4M level of theory and utilizing the atomization energy method. From the analytical and calculated data, their potential as energetic materials in different applications was evaluated and discussed.  相似文献   

14.
The reaction of organomercury(II) halogenides (RHgHal, Hal = Cl, I) with silver azide furnished the corresponding covalent organomercury(II) azides RHgN3 (R = Me ( 1 ), tBu ( 2 ), Ph ( 3 )). In addition to the characterization by multinuclear NMR spectroscopy, IR and Raman spectroscopy as well as mass spectrometry, the mercury content was determined. A dependance on the solventpolarity for the 14N NMR resonances was observed. Furthermore, X‐ray diffraction studies were performed and the crystal structures for mercury(II) azides 1 – 3 are reported. A comparison of the bond lengths and angles with data from theoretical calculations is given.  相似文献   

15.
1,1‐Dibromo‐2,2‐bis(trimethylsilylethynyl)ethene ( 2 ) reacts with two equivalents of 1‐boraadamantane ( 1 ) by 1,1‐organoboration of both trimethylsilylethynyl groups to give a triene 3 bearing two 4‐methylene‐3‐borahomoadamantane moieties in terminal positions. The triene was characterized by one‐ and two‐dimensional 1H, 11B, 13C and 29Si NMR spectroscopy in solution and X‐ray structural analysis in the solid state. The planes of the C double bond are strongly twisted against each other as a result of the bulky substituents, and the surroundings of the boron atoms deviate from the ideal trigonal planar geometry owing to the tension in the tricyclic frameworks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Reactions of the sandwich complexes [Cp*Fe(η5‐E5)] (Cp*=η5‐C5Me5; E=P ( 1 ), As ( 2 )) with the monovalent Group 13 metals Tl+, In+, and Ga+ containing the weakly coordinating anion [TEF] ([TEF]=[Al{OC(CF3)3}4]?) are described. Here, the one‐dimensional coordination polymers [M(μ,η51‐E5FeCp*)3]n[TEF]n (E=P, M=Tl ( 3 a ), In ( 3 b ), Ga ( 3 c ); E=As, M=Tl ( 4 a ), In ( 4 b )) are obtained as sole products in good yields. All products were analyzed by single‐crystal X‐ray diffraction, revealing a similar assembly of the products with η5‐bound E5 ligands and very weak σ‐interactions between one P or As atom of the ring to the neighbored Group 13 metal cation. By exchanging the [TEF] anion of 4 a for the larger [FAl] anion ([FAl]=[FAl{OC6F10(C6F5)}3]?), the coordination compound [Tl{(η5‐As5)FeCp*}3][FAl] ( 5 ) without any σ‐interactions of the As5‐ring is obtained. All products are readily soluble in CH2Cl2 and exhibit a dynamic coordination behavior in solution, which is supported by NMR spectroscopy and ESI‐MS spectrometry as well as by osmometric molecular‐weight determination. For a better understanding of the proceeding equilibrium DFT calculations of the cationic complexes were performed for the gas phase and in solution. Furthermore, the 31P{1H} magic‐angle spinning (MAS) NMR spectra of 3 a–c are presented and the first crystal structure of the starting material 2 was determined.  相似文献   

18.
Bringing order : A new class of periodic mesoporous organosilicas (PMOs) with a urea‐bridged organosilica precursor under acid‐catalyzed and inorganic‐salt‐assisted conditions was obtained. The large‐pore hybrid materials have ordered mesostructure with uniform pore size distributions, which can be seen from the TEM images.

  相似文献   


19.
New polynitro compounds containing a carbonyl biscarbamate moiety derived from the precursor carbonyldiisocyanate were synthesized. In addition, 2, 2‐dinitropropane‐1, 3‐diyl bis(2, 2,2‐trinitroethylcarbamate) and 2, 2‐dinitropropane‐1, 3‐diyl bis(2, 2,2‐trinitroethyl) dicarbonate, were synthesized using 2, 2‐dinitropropane‐1, 3‐diol as starting material. The compounds were characterized by using the analytical methods, single‐crystal X‐ray diffraction, vibrational spectroscopy (IR and Raman), multinuclear NMR spectroscopy, elemental analysis, and mass spectrometry. The thermal behavior was investigated with DSC measurements. The suitability of the compounds as potential oxidizers in energetic formulations was determined. The heats of formation of the compounds were calculated with GAUSSIAN 09. The detonation parameters such as the detonation pressure, velocity, energy, and temperature were computed using the EXPLO5 code. For a secure handling of the materials, the sensitivity towards impact, friction, and electrical discharge was tested using the BAM drop hammer, BAM friction tester as well as a small‐scale electrical discharge device, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号