首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A panchromatic 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene –zinc phthalocyanine conjugate (Bodipy–ZnPc) 1 was synthesized starting from phthalocyanine aldehyde 4 , via dipyrromethane 3 and dipyrromethene 2 . Conjugate 1 represents the first example in which a Bodipy unit is tethered to the peripheral position of a phthalocyanine core. Electrochemical and optical measurements provided evidence for strong electronic interactions between the Bodipy and ZnPc constituents in the ground state of 1 . When conjugate 1 is subjected to photoexcitation in the spectral region corresponding to the Bodipy absorption, the strong fluorescence characteristic of the latter subunit is effectively quenched (i.e., ≥97 %). Excitation spectral analysis confirmed that the photoexcited Bodipy and the tethered ZnPc subunits interact and that intraconjugate singlet energy transfer occurs with an efficiency of ca. 25 %. Treatment of conjugate 1 with N‐pyridylfulleropyrrolidine ( 8 ), an electron‐acceptor system containing a nitrogen ligand, gives rise to the novel electron donor–acceptor hybrid 1 ? 8 through ligation to the ZnPc center. Irradiation of the resulting supramolecular ensemble within the visible range leads to a charge‐separated Bodipy–ZnPc.+–C60.? radical‐ion‐pair state, through a sequence of excited‐state and charge transfers, characterized by a remarkably long lifetime of 39.9 ns in toluene.  相似文献   

2.
Multichromophoric boron‐dipyrromethene (Bodipy) dyes synthesized on phenylene‐ethynylene platforms have been be converted to energy transfer cassettes in a one‐step chemical transformation. Excitation energy transfer processes in these highly symmetrical derivatives were studied in detail, including time‐resolved fluorescence spectroscopy techniques. Excitation spectra and the emission lifetimes suggest efficient energy transfer between the donor and acceptor chromophore. These novel energy transfer cassettes, while highlighting a short‐cut approach to similar energy transfer systems, could be useful as large pseudo‐Stokes shift multichromophoric dyes with potential applications in diverse applications.  相似文献   

3.
Developing strong visible‐light‐absorbing (SVLA) earth‐abundant photosensitizers (PSs) for significantly improving the utilization of solar energy is highly desirable, yet it remains a great challenge. Herein, we adopt a through‐bond energy transfer (TBET) strategy by bridging boron dipyrromethene (Bodipy) and a CuI complex with an electronically conjugated bridge, resulting in the first SVLA CuI PSs ( Cu‐2 and Cu‐3 ). Cu‐3 has an extremely high molar extinction coefficient of 162 260 m ?1 cm?1 at 518 nm, over 62 times higher than that of traditional CuI PS ( Cu‐1 ). The photooxidation activity of Cu‐3 is much greater than that of Cu‐1 and noble‐metal PSs (Ru(bpy)32+ and Ir(ppy)3+) for both energy‐ and electron‐transfer reactions. Femto‐ and nanosecond transient absorption and theoretical investigations demonstrate that a “ping‐pong” energy‐transfer process in Cu‐3 involving a forward singlet TBET from Bodipy to the CuI complex and a backward triplet‐triplet energy transfer greatly contribute to the long‐lived and Bodipy‐localized triplet excited state.  相似文献   

4.
Six bichromophoric compounds-substituted coumarin ω -9-anthra-cene-poly-methene carboxylate and five model compounds were synthesized. Among them, eight compounds are new ones. Intramolecular singlet energy transfer has been demonstrated in the bichromophoric compounds 1? and studied in some detail. The absorption spectra of the compounds 1-6 bear evidence that the π-electron systems of coumarin and anthracene ring do not overlap appreciably. The coumarin moiety of the bichromophoric compounds molecule was excited at 314nm and the resulting fluorescence was characteristic of the anthracene group. The efficiency of transfer of singlet excitation from coumarin moiety to the anthracene grou is about 100% in both calculation and observation and the rate of the singlet energy transfer is about 1014 sec in the compounds 4-6. A possible mechanism of intramolecular energy transfer was suggested. The difference between 4-phenyl compounds 1-3 and 3-phenyl compounds 4-6 in spectra was com -pared.  相似文献   

5.
The synthesis of multichromophoric perylene bisimide-calix[4]arene arrays with up to five perylene units (containing orange, violet, and green perylene bisimide chromophores) and of monochromophoric model compounds was achieved by subsequent imidization of mono-Boc functionalized calix[4]arene linkers with three different types of perylene bisimide dye units. The optical properties of all compounds were studied with UV/vis absorption and steady state and time-resolved fluorescence spectroscopy. Upon excitation of the inner orange dye at 490 nm of array 3, strong fluorescence emission of the outer green perylene bisimide (PBI) chromophore at 744 nm is observed. The fluorescence excitation spectra of compounds 3 and 4 (lambdadet = 850 nm) show all absorption bands of the parent chromophores (e.g., all perylene units contribute to the emission from S1 state of the green PBI). Thus, the fluorescence emission and excitation spectra as well as time-resolved data of fluorescence lifetimes in the absence (tauD = 5.1 ns) and in the presence of an acceptor (tauDA = 0.8 ns) suggest efficient energy transfer processes between the perylene bisimide dye units. For the bichromophoric array 4, the energy transfer rate is calculated to a value of 1.05 x 109 s-1. These results demonstrate highly efficient energy transfer in cofacially assembled dye arrays.  相似文献   

6.
The synthesis and the spectroscopic properties of a bichromophoric ruthenium trisbipyridyl-1,4-diethynylenebenzene-pyrene system (Ru-b-Py) and the corresponding pyrene ligand (b-Py) are reported. The ruthenium model systems Ru-b-OH, Ru-b-Ph are also presented. UV–Vis absorption and emission at room and low temperature and time-resolved spectroscopy are discussed. For the Ru-b-Py dyad, a mixing of the 3MLCT state of the ruthenium-based component and the triplet state of pyrene, 3Py, is observed. Time-resolved transient absorption studies performed on the Ru-b-Py and on the b-Py ligand show that the lowest energy absorption is due to the population of the triplet state localized on the pyrene-component. Time-resolved studies also evidenced a relatively slow forward triplet equilibration rate, in the order of 2×105?s-1 (5?μs), and an even slower back energy transfer rate, 3.3×104?s-1, still faster than the intrinsic decay time of the pyrene (200?μs).  相似文献   

7.
The six multichromophoric species 1-6, containing the potentially luminescent Ru(II) polypyridine subunits and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene fluorophores (dipyrromethene-BF(2) dyes, herein after called bodipy), have been prepared and their absorption spectra, luminescence properties (both at room temperature in fluid solution and at 77 K in rigid matrix), and redox properties have been investigated (for the structuralformulas of all the compounds, see Figure 1). For comparison purposes, also the same properties of the bodipy-based free ligands have been examined. Three of the multichromophoric species (1-3) are based on the Ru(bpy)(3)-type metal subunit, whereas 4-6 are based on the Ru(terpy)(2)-type metal subunit. Transient absorption spectroscopy at room temperature of all the compounds has also been performed. The absorption spectra of all the metal complexes show features that can be assigned to the Ru(II) polypyridine subunits and to the bodipy centers. In particular, the lowest energy spin-allowed pi-pi* transition of the bodipy groups dominates the visible region, peaking at about 530 nm. All the new complexes exhibit a rich redox behavior, with reversible processes attributed to specific sites, indicating a small perturbation of each redox center and therefore highlighting the supramolecular nature of the multichromophoric assemblies. Despite the good luminescence properties of the separated components, 1-6 do not exhibit any luminescence at room temperature; however, transient absorption spectroscopy evidences that for all of them a long-lived (microsecond time scale) excited state is formed, which is identified as the bodipy-based triplet state. Pump-probe transient absorption spectroscopy suggests that such a triplet state is formed from the promptly prepared bodipy-based (1)pi-pi* state in most cases by the intervention of a charge-separated level. At 77 K, all the complexes except complex 1 exhibit the bodipy-based fluorescence, although with a slightly shortened lifetime compared to the corresponding free ligand(s), and 4-6 also exhibit a phosphorescence assigned to the bodipy subunits. Phosphorescence of bodipy species had never been reported in the literature to the best of our knowledge: in the present cases we propose that it is an effective decay process thanks to the presence of the ruthenium heavy atom and of the closely lying (3)MLCT state of the Ru(terpy)(2)-type subunits.  相似文献   

8.
The engineering of photoactive arrays built from a flat, functionalized triazatruxene (TAT) platform is described. The primary synthetic strategy involved the step by step connection of one, two or three bis(thienyl)diketopyrrolopyrrole (DPP) modules. Subsequent bromination of the pendent thiophene ring was not selective and provided a mixture of regioisomers. However, selective grafting of boron dipyrromethene (Bodipy) units via Pd-catalysed cross couplings enabled the construction of TAT/DPP/Bodipy arrays. As well, direct coupling of two green F-Bodipy units to dibromoTAT provided a substrate suitable for reaction with hydroxyl-propargyl-substituted red Bodipy dyes to give ready access to O-Bodipy linked multichromophoric systems. All the new dyes displayed strong absorption in the near-UV and visible region of the solar spectra (400–750 nm), with intramolecular cascade energy transfer enabling photon concentration and fluorescence at approximately 740 nm.  相似文献   

9.
Two pairs of novel triptycene‐derived calix[6]arenes 4 a , b and 5 a , b have been efficiently synthesized through both one‐pot and two‐step fragment‐coupling strategies starting from 2,7‐bis(hydroxymethyl)‐1,8‐dimethoxytriptycene 1 . Subsequent demethylation of 4 a , b and 5 a , b with BBr3 in dry dichloromethane gave the macrocyclic compounds 6 a , b and 7 a , b . Treatment of either 4 a or 6 a with AlCl3 resulted in the same debutylated product 8 , while 9 was similarly obtained from either 5 a or 7 a . Structural studies revealed that all of the macrocycles have well‐defined structures with fixed conformations both in solution and in the solid state owing to the introduction of the triptycene moiety with a rigid three‐dimensional (3D) structure, making them very different from their classical calix[6]arene counterparts. As a consequence, it was found that all of these the triptycene‐derived calix[6]arenes could encapsulate small neutral molecules in their cavities in the solid state. Moreover, it was also found that the macrocycles 4 b and 5 b showed highly efficient complexation abilities toward fullerenes C60 and C70, forming 1:1 complexes with association constants ranging from (5.22±0.20)×104 to (8.68±0.30)×104 M ?1.  相似文献   

10.
New boron‐dipyrromethene (BODIPY) dyes linked to viologen are prepared and their photophysical and electrochemical properties are investigated. Both synthesized molecules have similar electronic absorption spectra with the absorption maximum localized at 517 and 501 nm for dye 1 and dye 2 , respectively. They exhibit well‐defined redox behavior, highlighting the presence of BODIPY and viologen subunits, with little perturbation of the redox potential of both subunits with respect to the parent compounds. Both dyes are heavily quenched by photoinduced electron transfer from the BODIPY to the viologen subunit. The transient absorption technique demonstrates that dye 2 forms the viologen radical within a timeframe of 7.1 ps, and that the charge‐separated species has a lifetime of 59 ps. Sustained irradiation of dye 2 in the presence of a tertiary amine allows for the accumulation of BODIPY–methyl‐4,4′‐bipyridinium (BODIPY–MV+), as observed by its characteristic absorption at 396 and 603 nm. However, dye 2 does not generate catalytic amounts of hydrogen under standard conditions.  相似文献   

11.
Aminonaphthalimide–BODIPY energy transfer cassettes were found to show very fast (kEET≈1010–1011 s?1) and efficient BODIPY fluorescence sensitization. This was observed upon one‐ and two‐photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two‐photon absorption cross‐section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ≈10 GM for the BODIPY versus 19–26 GM in the dyad at λexc=840 nm; 1 GM (Goeppert–Mayer unit)=10?50 cm4 s molecule?1 photon?1]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfer cassette concept, was demonstrated by time‐dependent density functional theory calculations. The applicability of the new probes in the one‐ and two‐photon excitation mode was demonstrated in a proof‐of‐principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY‐containing dyad.  相似文献   

12.
The synthesis and photophysical properties of two novel multichromophoric compounds is presented. Their molecular design comprises a carbonyl‐bridged triarylamine core and either naphthalimides or 4‐(5‐hexyl‐2,2′‐bithiophene)naphthalimides as second chromophore in the periphery. The lateral chromophores are attached to the core via an amide linkage and a short alkyl spacer. The synthetic approach demonstrates a straightforward functionalization strategy for carbonyl‐bridged triarylamines. Steady‐state and time‐resolved spectroscopic investigations of these compounds, in combination with three reference compounds, provide clear evidence for energy transfer in both multichromophoric compounds. The direction of the energy transfer depends on the lateral chromophore used. Furthermore, the compound bearing the lateral 4‐(bithiophene)naphthaimides is capable of forming fluorescent gels at very low concentrations in the sub‐millimolar regime whilst retaining its energy transfer properties.  相似文献   

13.
Three new molecular dyads, comprising a bora-3a,4a-diaza-s-indacene (Bodipy) dye linked to two aromatic polycycles via the boron center, have been synthesized and fully characterized. The polycyclic compounds are either pyrene or perylene, or a mixture of both. Whereas the absorption spectral profiles contain important contributions from each of the subunits, fluorescence occurs exclusively from the Bodipy fragment. Intramolecular excitation energy transfer is extremely efficient in each case, even though spectral overlap integrals for the pyrene-based system are modest. Although these polycycles are sterically congested, molecular dynamics simulations indicate that they are in dynamic motion, and this hinders proper computation of the orientation factors for F?rster-type energy transfer. These new dyes, especially the mixed polycycle system, greatly extend the range of excitation wavelengths that can be used for fluorescence microscopy.  相似文献   

14.
A new artificial photosynthetic triad array, a [60]fullerene–triosmium cluster/zinc–porphyrin/boron–dipyrrin complex ( 1 , Os3C60/ZnP/Bodipy), has been prepared by decarbonylation of Os3(CO)8(CN(CH2)3Si(OEt)3)(μ3‐η222‐C60) ( 6 ) with Me3NO/MeCN and subsequent reaction with the isocyanide ligand CNZnP/Bodipy ( 5 ) containing zinc porphyrin (ZnP) and boron dipyrrin (Bodipy) moieties. Triad 1 has been characterized by various spectroscopic methods (MS, NMR, IR, UV/Vis, photoluminescence, and transient absorption spectroscopy). The electrochemical properties of 1 in chlorobenzene (CB) have been examined by cyclic voltammetry; the general feature of the cyclic voltammogram of 1 is nine reversible one‐electron redox couples, that is, the sum of those of 5 and 6 . DFT has been applied to study the molecular and electronic structures of 1 . On the basis of fluorescence‐lifetime measurements and transient absorption spectroscopic data, 1 undergoes an efficient energy transfer from Bodipy to ZnP and a fast electron transfer from ZnP to C60; the detailed kinetics involved in both events have been elucidated. The SAM of triad 1 ( 1 /ITO; ITO=indium–tin oxide) has been prepared by immersion of an ITO electrode in a CB solution of 1 and diazabicyclo‐octane (2:1 equiv), and characterized by UV/Vis absorption spectroscopy, water contact angle, X‐ray photoelectron spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of 1 /ITO have been investigated by a standard three‐electrode system in the presence of an ascorbic acid sacrificial electron donor. The quantum yield of the photoelectrochemical cell has been estimated to be 29 % based on the number of photons absorbed by the chromophores. Our triad 1 is unique when compared to previously reported photoinduced electron‐transfer arrays, in that C60 is linked by π bonding with little perturbation of the C60 electron delocalization.  相似文献   

15.
Two series of multi-cascade scaffolds bearing a boradiazaindacene (yellow dye) or a boradibenzopyrromethene (green dye) as the final energy acceptor have been synthesized. Each scaffold contains one, two or three alkynylaryl energy donors (such as pyrene D1, perylene D2, and fluorene D3) linked to the boron center. Palladium-catalyzed cross-coupling of dihalogenated Bodipy starting material enabled the step-by-step construction of the different modules. In all cases, selective irradiation in each absorbing subunit resulted in efficient energy transfer over 25 Å to the Bodipy units.  相似文献   

16.
Triplet‐triplet extinction coefficients for astaxanthin ( I ) and canthaxanthin ( II ) in different deaerated polarity solutions of MeCN and benzene were evaluated by laser flash photolysis at 298 K in the spectral region from 350 to 650 nm by energy transfer method, employing 2‐acetonaphthone as sensitizer. The triplet‐triplet extinction coefficients in MeCN and benzene were different in terms of the carotenoid present. The maximum triplet‐triplet extinction coefficient was 0.1–1.7×105 L·mol−1·cm−1 in different solvents. The rate constants of triplet decay were I : 1.25×1010 L·mol−1·s−1, II : 1.12×1010 L·mol−1·s−1 in MeCN; and I : 1.75×1010 L·mol−1·cm−1, II : 3.27×1010 L·mol−1·s−1 in benzene. The bimolecular rate constants of energy transfer from triplet excited 2‐acetonaphthone to carotenoids were determined from the linear regression of the decay rate constant of 2‐acetonaphthone triplet at varying carotenoid concentrations. The triplet lifetimes of 3AST* and 3CAN* in different solvents were also determined. The results indicated that triplet energy transfer was nearly diffusion‐controlled.  相似文献   

17.
A multimodular donor–acceptor tetrad featuring a bis(zinc porphyrin)–(zinc phthalocyanine) ((ZnP–ZnP)–ZnPc) triad and bis‐pyridine‐functionalized fullerene was assembled by a “two‐point” binding strategy, and investigated as a charge‐separating photosynthetic antenna‐reaction center mimic. The spectral and computational studies suggested that the mode of binding of the bis‐pyridine‐functionalized fullerene involves either one of the zinc porphyrin and zinc phthalocyanine (Pc) entities of the triad or both zinc porphyrin entities leaving ZnPc unbound. The binding constant evaluated by constructing a Benesi–Hildebrand plot by using the optical data was found to be 1.17×105 M ?1, whereas a plot of “mole‐ratio” method revealed a 1:1 stoichiometry for the supramolecular tetrad. The mode of binding was further supported by differential pulse voltammetry studies, in which redox modulation of both zinc porphyrin and zinc phthalocyanine entities was observed. The geometry of the tetrad was deduced by B3LYP/6‐31G* optimization, whereas the energy levels for different photochemical events was established by using data from the optical absorption and emission, and electrochemical studies. Excitation of the zinc porphyrin entity of the triad and tetrad revealed ultrafast singlet–singlet energy transfer to the appended zinc phthalocyanine. The estimated rate of energy transfer (kENT) in the case of the triad was found to be 7.5×1011 s?1 in toluene and 6.3×1011 s?1 in o‐dichlorobenzene, respectively. As was predicted from the energy levels, photoinduced electron transfer from the energy‐transfer product, that is, singlet‐excited zinc phthalocyanine to fullerene was verified from the femtosecond‐transient spectral studies, both in o‐dichlorobenzene and toluene. Transient bands corresponding to ZnPc ? + in the 850 nm range and C60 ? ? in the 1020 nm range were clearly observed. The rate of charge separation, kCS, and rate of charge recombination, kCR, for the (ZnP–ZnP)–ZnPc ? +:Py2C60 ? ? radical ion pair (from the time profile of 849 nm peak) were found to be 2.20×1011 and 6.10×108 s?1 in toluene, and 6.82×1011 and 1.20×109 s?1 in o‐dichlorobenzene, respectively. These results revealed efficient energy transfer followed by charge separation in the newly assembled supramolecular tetrad.  相似文献   

18.
Four 1,8‐naphthalimide hydrazone molecules with different electron‐donating groups have been applied in the study of linear and nonlinear optical (NLO) properties. These compounds showed strong green emission in solution. Their NLO properties such as two‐photon absorption (TPA) behavior with femtosecond laser pulses ca. 800 nm and excited‐state absorption (ESA) behavior with nanosecond laser pulses at 532 nm were investigated. Compound 4 presented the largest two‐photon cross section (550 GM) among them due to two factors: the conjugated length of compound 4 is the longest and the electron‐donating ability of compound 4 is the strongest. Different from TPA behavior, compound 2 showed the best nonlinear absorption properties at 532 nm and its nonlinear absorption coefficient and third‐order nonlinear optical susceptibilities χ (3) were up to 1.41×10?10 MKS and 4.65×10?12 esu, respectively. Through the modification of the structure, the nonlinear optical properties of these compounds at different wavelengths (532 and 800 nm) were well tuned. The great broad‐band nonlinear optical properties indicate hydrazones are good candidates for organic nonlinear optical absorption materials.  相似文献   

19.
The fluorescent probe ROFRET contains a Bodipy molecular rotor connected through a short triazole‐based spacer to a fully alkylated Bodipy. Förster resonance energy transfer takes place from the rotor to the other Bodipy, and is enhanced to a limiting value as the viscosity of the solvent increases. Time‐resolved spectroscopy and steady‐state studies are consistent with both forward and reverse energy transfer, and delayed fluorescence.  相似文献   

20.
A series of asymmetric triphenylene derivatives containing typical D –π–A structures is successfully synthesized by means of [2+2] cycloaddition–cycloreversion click reactions. The photophysical and electrochemical properties, as well as the click reactions, are characterized by means of UV/Vis absorption spectroscopy, cyclic voltammetry, and DFT modulations. In addition, the third‐order nonlinear properties, including the nonlinear absorption and the nonlinear susceptibilities, are investigated by using Z‐scan techniques. A typical reverse saturable absorption–saturable absorption behavior is observed for the third‐order nonlinear absorption, with the third‐order nonlinear susceptibilities of the compounds being 1.05×10?12, ?1.50×10?12, and ?0.52×10?12 esu, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号