首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electroconductive poly(N‐butylaniline)–lignosulfonate (PBA–LS) composite nanospheres were prepared in a facile way by in situ, unstirred polymerization of N‐butylaniline with lignosulfonate (LS) as a dispersant and dopant. The LS content was used to optimize the size, structure, electroconductivity, solubility, and silver ion adsorptive capacity of the PBA–LS nanospheres. Uniform PBA–LS10 nanospheres with a minimal mean diameter of 375 nm and high stability were obtained when the LS content was 10 wt %. The PBA–LS10 nanospheres possess an increased electroconductivity of 0.109 S cm?1 compared with that of poly(N‐butylaniline) (0.0751 S cm?1). Furthermore, the PBA–LS10 nanospheres have a maximal silver‐ion sorption capacity of 815.0 mg g?1 at an initial silver ion concentration of 50 mmol L ?1 (25 °C for 48 h), an enhancement of 70.4 % compared with PBA. Moreover, a sorption mechanism of silver ions on the PBA–LS10 nanospheres is proposed. TEM and wide‐angle X‐ray diffraction results showed that silver nanoparticles with a diameter size range of 6.8–55 nm was achieved after sorption, indicating that the PBA–LS10 nanospheres had high reductibility for silver ions.  相似文献   

2.
Poly(N‐vinyl pyrrolidone)‐block‐poly(N‐vinyl carbazole)‐block‐poly(N‐vinyl pyrrolidone) (PVP‐b‐PVK‐b‐PVP) triblock copolymers were synthesized via sequential reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process. First, 1,4‐phenylenebis(methylene)bis(ethyl xanthate) was used as a chain transfer agent to mediate the radical polymerization of N‐vinyl carbazole (NVK). It was found that the polymerization was in a controlled and living manner. Second, one of α,ω‐dixanthate‐terminated PVKs was used as the macromolecular chain transfer agent to mediate the radical polymerization of N‐vinyl pyrrolidone (NVP) to obtain the triblock copolymers with various lengths of PVP blocks. Transmission electron microscopy (TEM) showed that the triblock copolymers in bulks were microphase‐separated and that PVK blocks were self‐organized into cylindrical microdomains, depending on the lengths of PVP blocks. In aqueous solutions, all these triblock copolymers can self‐assemble into the spherical micelles. The critical micelle concentrations of the triblock copolymers were determined without external adding fluorescence probe. By analyzing the change in fluorescence intensity as functions of the concentration, it was judged that the onset of micellization occurred at the concentration while the FL intensity began negatively to deviate from the initial linear increase with the concentration. Fluorescence spectroscopy indicates that the self‐assembled nanoobjects of the PVP‐b‐PVK‐b‐PVP triblock copolymers in water were capable of emitting blue/or purple fluorescence under the irradiation of ultraviolet light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1852–1863  相似文献   

3.
The generation of a range of star‐shaped block copolymers composed of a biocompatible poly(ethylene glycol) (PEG) core tethered to a polyalanine (PAla) shell that possesses the capability to (reversibly) self‐assemble in water is described. The hydrogels formed offer a hydrophilic environment ideal for biological processes involving proteins and are able to withhold albumin for prolonged periods before its triggered release following the targeted material degradation by the proteolytic enzyme elastase. Consequently, the materials formed offer significant promise for the delivery of proteins, and possibly inhibitors, in response to a proteolytic enzyme overexpressed in chronic wounds.  相似文献   

4.
5.
This paper describes the self‐assembly of rod–coil inclusion complexes, polyethylenimine–poly(ethylene glycol)–α‐cyclodextrin (PEI–PEG–α‐CD). It is demonstrated that α‐CDs should exclusively thread on the PEG block in PEI–PEG copolymers and the resulting complexes have both rigid block (PEG–α‐CD) and coil block (protonated PEI). By varying the rigid block fraction, aggregates with hollow spheres or rod‐like particles could be formed simply by self‐assembly in aqueous solution.  相似文献   

6.
In this contribution, we report on the self‐assembly in water of original amphiphilic poly(2‐methyl‐2‐oxazoline)‐b‐poly(tert‐butyl acrylate) copolymers, synthesized by copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction. For such purpose, (poly(2‐methyl‐2‐oxazoline)) and (poly(tert‐butyl acrylate)) are first prepared by cationic ring‐opening polymerization and atom transfer radical polymerization, respectively. Well‐defined polymeric building blocks, ω‐N3‐P(t‐BA) and α‐alkyne‐P(MOx), bearing reactive chain end groups, are accurately characterized by matrix‐assisted laser desorption ionization time‐of‐flight spectroscopy. Then, P(MOx)nb‐P(t‐BA)m are achieved by polymer–polymer coupling and are fully characterized by diffusion‐ordered NMR spectroscopy and size exclusion chromatography, demonstrating the obtaining of pure amphiphilic copolymers. Consequently, the latter lead to the formation in water of well‐defined monodisperse spherical micelles (RH = 40–60 nm), which are studied by fluorescence spectroscopy, static light scattering, atomic force microscope, and transmission electronic microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Summary: Amphiphilic diblock copolymers consisting of a hydrophilic block, poly(acrylic acid), and a hydrophobic block, polystyrene, were synthesized by direct nitroxide‐mediated polymerization using the PS block as a macro‐initiator for the first time. Several techniques were used to characterize the amphiphilic block copolymers (size exclusion chromatography, NMR spectroscopy). The proposed method can lead to samples with a broad range of composition and molar mass. Preliminary studies of their self‐assembly in aqueous medium using fluorescence spectroscopy and small‐angle neutron scattering are presented.

Schematic of the formation of the PS‐b‐PAA block copolymers and their micellization in aqueous media.  相似文献   


8.
The step‐wise solution self‐assembly of double crystalline organometallic poly(ferrocenyldimethylsilane)‐block‐poly(2‐iso‐propyl‐2‐oxazoline) (PFDMS‐b‐PiPrOx) diblock copolymers is demonstrated. Two block copolymers are obtained by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), featuring PFDMS/PiPrOx weight fractions of 46/54 (PFDMS30b‐PiPrOx75) and 30/70 (PFDMS30b‐PiPrOx155). Nonsolvent induced crystallization of PFDMS in acetone leads in both cases to cylindrical micelles with a PFDMS core. Afterward, the structures are transferred into water for sequential temperature‐induced crystallization of the PiPrOx corona, leading to hierarchical double crystalline superstructures, which are investigated using scanning electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry.

  相似文献   


9.
Organogels that are self‐assembled from simple peptide molecules are an interesting class of nano‐ and mesoscale soft matter with simplicity and functionality. Investigating the precise roles of the organic solvents and their effects on stabilization of the formed organogel is an important topic for the development of low‐molecular‐weight gelators. We report the structural transition of an organogel self‐assembled from a single dipeptide building block, diphenylalanine (L ‐Phe‐L ‐Phe, FF), in toluene into a flower‐like microcrystal merely by introducing ethanol as a co‐solvent; this provides deeper insights into the phase transition between mesostable gels and thermodynamically stable microcrystals. Multiple characterization techniques were used to reveal the transitions. The results indicate that there are different molecular‐packing modes formed in the gels and in the microcrystals. Further studies show that the co‐solvent, ethanol, which has a higher polarity than toluene, might be involved in the formation of hydrogen bonds during molecular self‐assembly of the dipeptide in mixed solvents, thus leading to the transition of organogels into microcrystals. The structural transformation modulated by the co‐solvent might have a potential implication in controllable molecular self‐assembly.  相似文献   

10.
Surfaces with “dynamicity” whereby surface properties can be modulated by an external stimulus on user demand have been actively exploited for the past decade. These switchable surfaces with dynamic properties are widely used for a number of applications such as micro/nanoarrays, biomolecule immobilization, basic cell studies, and tissue engineering on a variety of materials. This minireview highlights the dynamic control of surface properties on self‐assembled monolayers and focuses on dynamicity that stems from (bio)chemical conversions achieved by electrical potentials, photoillumination, chemical reagents, enzymes, and pH.  相似文献   

11.
We have developed N,N′‐dialkylmethylenediimidazolium salts ([CnCnDIM][X]2) that self‐organize into multilayered cationic vesicles and can interact with DNA. These preorganized systems form complexes with linear DNA and protect it from DNase I cleavage.  相似文献   

12.
13.
Summary: Self‐association behaviors of poly(γ‐benzyl L ‐glutamate)‐graft‐poly(ethylene glycol) (PBLG‐graft‐PEG) and its mixtures with PBLG homopolymer in aqueous media were investigated by fluorescence spectroscopy, transmission electron microscopy (TEM), and nuclear magnetic resonance (NMR) spectroscopy. It was revealed that PBLG‐graft‐PEG could self‐assemble to form polymeric micelles with a core‐shell structure in the shape of spindle. The introduction of PBLG homopolymer not only decreases the critical micelle concentration, but also changes the morphology of the micelles.

The excitation fluorescence spectra of pyrene as a function of concentrations for the mixture of PBLG‐graft‐PEG with PBLG and a TEM image of the formed micelles.  相似文献   


14.
Summary: Polyaniline (PANI) is successfully self‐assembled with poly(N‐vinylpyrrolidone) (PVP) into aqueous nanocolloids. The typical morphology of the colloids is studied by atomic force microscopy (AFM), which reveals spherical nanoparticles with a diameter of 80–150 nm. A possible mechanism for such a post‐synthetic self‐assembly process is proposed.

AFM micrograph of PANI aqueous nanocolloids stabilized by PVP via a novel post‐synthetic self‐assembly method.  相似文献   


15.
In this paper, self‐assembled polymeric toroids formed by a temperature‐driven process are reported. Rhodamine B (RhB) end‐capped poly(N‐isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two‐phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature‐driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self‐assembly of polymers. Moreover, the photoluminescent behavior of the RhB end‐capped PNIPAAm species formed by the process is also studied and discussed.

  相似文献   


16.
17.
18.
19.
Linear π‐conjugated oligomers are known to form organogels through noncovalent interactions. Herein, we report the effect of π‐repeat units on the gelation and morphological properties of three different oligo(p‐phenylene‐ethynylene)s: OPE3 , OPE5 , and OPE7 . All of these molecules form fluorescent gels in nonpolar solvents at low critical gel concentrations, thereby resulting in a blue gel for OPE3 , a green gel for OPE5 , and a greenish yellow gel for OPE7 . The molecule–molecule and molecule–substrate interactions in these OPEs are strongly influenced by the conjugation length of the molecules. Silicon wafer suppresses substrate–molecule interactions whereas a mica surface facilitates such interactions. At lower concentrations, OPE3 formed vesicular assemblies and OPE5 gave entangled fibers, whereas OPE7 resulted in spiral assemblies on a mica surface. At higher concentrations, OPE3 and OPE5 resulted in super‐bundles of fibers and flowerlike short‐fiber agglomerates when different conditions were applied. The number of polymorphic structures increases on increasing the conjugation length, as seen in the case of OPE7 with n=5, which resulted in a variety of exotic structures, the formation of which could be controlled by varying the substrate, concentration, and humidity.  相似文献   

20.
A series of modular mesogenic salts based on the combination of anionic 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (F‐BODIPY) 2,6‐disulfonate dyes and trialkoxybenzyl‐functionalised imidazolium cations has been designed and synthesised. Each salt contains a rigid dianionic BODIPY core associated with two imidazolium cations functionalised by 1,2,3‐trialkoxybenzyl (alkyl=n‐C8, n‐C12 or n‐C16) units or, in one case, with imidazolium cations functionalised by a trialkylgallate (3,4,5‐trialkoxybenzoate) unit in which the 3,5‐dialkyl groups are terminated with a polymerisable acrylate entity. All these compounds were highly fluorescent in solution with quantum yields ranging from 54 to 62 %. In the solid state, the width of the emission band observed at around 650 nm is a clear signature of aggregation. With the trialkoxybenzylimidazolium cations, polarised optical microscopy (POM) and X‐ray scattering experiments showed that columnar mesophases were formed. Differential scanning calorimetry (DSC) studies confirmed the mesomorphic behaviour from room temperature to about 130 °C for salts with alkyl chains containing 8, 12 and 16 carbon atoms. The strong luminescence of the BODIPY unit was maintained in the mesophase and fluorescence measurements confirmed the presence of J aggregates in all cases. The salt containing the gallate‐functionalised imidazolium cations showed no mesomorphism but the acrylate terminal units could be used to engender photoinitiated polymerisation thereby allowing the material to be immobilised on glass plates. The polymerisation process was followed by FTIR spectroscopy and the fixed and patterned films were highly fluorescent with a solid‐state emission close to that of the complex in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号