共查询到20条相似文献,搜索用时 11 毫秒
1.
Yan‐Ping Ma Dr. Xun‐Lei Ding Dr. Yan‐Xia Zhao Sheng‐Gui He Prof. Dr. 《Chemphyschem》2010,11(8):1718-1725
Density functional theory (DFT) calculations are used to investigate the reaction mechanism of V3O8+C2H4. The reaction of V3O8 with C2H4 produces V3O7CH2+HCHO or V3O7+CH2OCH2 overall barrierlessly at room temperature, whereas formation of hydrogen‐transfer products V3O7+CH3CHO is subject to a tiny overall free energy barrier (0.03 eV), although the formation of the last‐named pair of products is thermodynamically more favorable than that of the first two. These DFT results are in agreement with recent experimental observations. The (Ob)2V(OtOt). (b=bridging, t=terminal) moiety containing the oxygen radical in V3O8 is the active site in the reaction with C2H4. Similarities and differences between the reactivities of (Ob)2V(OtOt). in V3O8 and the small VO3 cluster [(Ot)2VOt.] are discussed. Moreover, the effect of the support on the reactivity of the (Ob)2V(OtOt). active site is evaluated by investigating the reactivity of the cluster VX2O8, which is obtained by replacing the V atoms in the (Ob)3VOt support moieties of V3O8 with X atoms (X=P, As, Sb, Nb, Ta, Si, and Ti). Support X atoms with different electronegativities influence the oxidative reactivity of the (Ob)2V(OtOt). active site through changing the net charge of the active site. These theoretical predictions of the mechanism of V3O8+C2H4 and the effect of the support on the active site may be helpful for understanding the reactivity and selectivity of reactive O. species over condensed‐phase catalysts. 相似文献
2.
3.
A Theoretical Study of Ene Reactions in Solution: A Solution‐Phase Translational Entropy Model 下载免费PDF全文
Several density functional theory (DFT) methods, such as CAM‐B3LYP, M06, ωB97x, and ωB97xD, are used to characterize a range of ene reactions. The Gibbs free energy, activation enthalpy, and entropy are calculated with both the gas‐ and solution‐phase translational entropy; the results obtained from the solution‐phase translational entropies are quite close to the experimental measurements, whereas the gas‐phase translational entropies do not perform well. For ene reactions between the enophile propanedioic acid (2‐oxo‐1,3‐dimethyl ester) and π donors, the two‐solvent‐involved explicit+implicit model can be employed to obtain accurate activation entropies and free‐energy barriers, because the interaction between the carbonyl oxygen atom and the solvent in the transition state is strengthened with the formation of C?C and O?H bonds. In contrast, an implicit solvent model is adequate to calculate activation entropies and free‐energy barriers for the corresponding reactions of the enophile 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione. 相似文献
4.
Francesco Bizzotto Dr. Hassan Ouhbi Dr. Yongchun Fu Dr. Gustav K. H. Wiberg Prof. Dr. Ulrich Aschauer Prof. Dr. Matthias Arenz 《Chemphyschem》2019,20(22):3154-3162
In the present work we investigate the structure sensitivity of the oxygen evolution reaction (OER) combining electrochemistry, in situ spectroscopy and density functional theory calculations. The intrinsic difficulty of such studies is the fact that at electrode potentials where the OER is observed, the electrode material is highly oxidized. As a consequence, the surface structure during the reaction is in general ill-defined and only scarce knowledge exists concerning the structure-activity relationship of this important reaction. To alleviate these challenging conditions, we chose as starting point well-defined Pt single-crystal electrodes, which we exposed to well-defined conditioning before studying their OER rate. Using this approach, a potential region is identified where the OER on Pt is indeed structure-sensitive with Pt(100) being significantly more active than Pt(111). This experimental finding is in contrast to a DFT analysis of the adsorption strength of the reaction intermediates O*, OH*, and OOH* often used to plot the activity in a volcano curve. It is proposed that as a consequence of the highly oxidizing conditions, the structure-sensitive charge-transfer resistance through the interface determines the observed reaction rate. 相似文献
5.
Javier Luis-Barrera Víctor Laina-Martín Thomas Rigotti Dr. Francesca Peccati Prof. Dr. Xavier Solans-Monfort Prof. Dr. Mariona Sodupe Prof. Dr. Rubén Mas-Ballesté Dr. Marta Liras Prof. Dr. José Alemán 《Angewandte Chemie (International ed. in English)》2017,56(27):7826-7830
Described herein is a new visible-light photocatalytic strategy for the synthesis of enantioenriched dihydrofurans and cyclopentenes by an intramolecular nitro cyclopropane ring expansion reaction. Mechanistic studies and DFT calculations are used to elucidate the key factors in this new ring expansion reaction, and the need for the nitro group on the cyclopropane. 相似文献
6.
As one of the representative perovskite-type oxynitride photocatalysts, SrTaO2N has the ability to split water in the visible-light region. It was found that the surface modification and interfacial design of SrTaO2N-based materials are closely related to the photocatalytic activity, but the microscopic mechanisms of these experimental phenomena are not well understood. In this work, we have utilized density functional theory (DFT) calculations to investigate the effect of anion ordering and exposed terminations on the electronic structures, optical absorption, water adsorption and the mechanisms of water oxidation and reduction reactions of SrTaO2N. Our results indicate that cis configurations are more stable than trans configurations. The anion ordering has an important effect on the band gap and optical absorption coefficient. The terminations with exposed Ta atoms are more stable and have bigger work functions than those with exposed Sr atoms possibly due to the bonding ionicity and surface dipoles. The dissociative adsorption of water is energetically more favorable than the molecular adsorption on most surfaces. The highly active sites of hydrogen evolution reaction (HER) are the exposed nonmetal atoms. Terminations with exposed Sr and N atoms have lower overpotentials (0.70–0.77 V) of oxygen evolution reaction (OER) than others. They are comparable to the calculated results of common photocatalysts, such as Co3O4 and TiO2. This study sheds light on the relationship between the termination structure with different anion orders and the photocatalysis-related properties of SrTaO2N at a molecular level, which provides guidance for constructing highly active photocatalytic materials. 相似文献
7.
Core–Shell NiO@Ni‐P Hybrid Nanosheet Array for Synergistically Enhanced Oxygen Evolution Electrocatalysis: Experimental and Theoretical Insights 下载免费PDF全文
Shuai Hao Ninghua Chen Qin Liu Prof. Ying Xie Prof. Honggang Fu Prof. Yingchun Yang 《化学:亚洲杂志》2018,13(8):944-949
Cost‐effective and highly‐efficient electrocatalysts for the oxygen evolution reaction are crucial for electrolytic hydrogen production. Here, we report core–shell NiO@Ni‐P nanosheet arrays as a high‐performance 3D catalyst for water oxidation electrocatalysis. Such nanoarrays demand overpotentials of 292 and 350 mV to drive geometrical catalytic current densities of 10 and 100 mA cm?2, respectively, with an activity superior to its NiO and Ni‐P counterparts. Notably, this catalyst also shows a high long‐term electrochemical durability with a Faradaic efficiency of 98.1 %. Density functional theory calculation reveals that the superior activity benefits from the synergistic effect between NiO and Ni‐P. 相似文献
8.
Aleksej Goduljan Dr. Leandro Moreira de Campos Pinto Dr. Fernanda Juarez Dr. Elizabeth Santos Prof. Dr. Wolfgang Schmickler 《Chemphyschem》2016,17(4):500-505
Silver is much more reactive to oxygen than gold; nevertheless, in alkaline solutions, the rates of oxygen reduction on both metals are similar. To explain this phenomenon, the first, rate‐determining step of oxygen reduction on Ag(100) is determined by a combination of DFT, molecular dynamics, and electrocatalysis theory. In vacuum, oxygen is adsorbed on Ag(100), but in the electrochemical environment, the adsorption energy is offset by the loss of hydration energy as the molecule approaches the surface. As a result, the first electron transfer should take place in an outer‐sphere mode. Previously, the same mechanism for oxygen reduction on Au(100) has been predicted, and these calculations have been repeated by using a more advanced version of the electrocatalysis theory discussed herein to confirm previous conclusions. The theoretical results compare well with experimental data. 相似文献
9.
Frank Meyer‐Wegner Josef H. Wender Konstantin Falahati Timo Porsch Tanja Sinke Dr. Michael Bolte Prof. Dr. Matthias Wagner Prof. Dr. Max C. Holthausen Dr. Hans‐Wolfram Lerner 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(16):4681-4690
The reaction of 4‐chloro‐1,2‐dimethyl‐4‐supersilylsila‐1‐cyclopentene ( 2 a ) with Li[NiPr2] at ?78 °C results in the formation of the formal 1,4‐addition product of the silacyclopentadiene derivative 3,4‐dimethyl‐1‐supersilylsila‐1,3‐cyclopentadiene ( 4 a ) with 2,3‐dimethyl‐4‐supersilylsila‐1,3‐cyclopentadiene ( 5 a ). In addition the respective adducts of the Diels–Alder reactions of 4 a + 4 a and 4 a + 5 a were obtained. Compound 4 a , which displays an s‐cis‐silacyclopentadiene configuration, reacts with cyclohexene to form the racemate of the [4+2] cycloadduct of 4 a and cyclohexene ( 9 ). In the reaction between 4 a and 2,3‐dimethylbutadiene, however, 4 a acted as silene as well as silacyclopentadiene to yield the [2+4] and [4+2] cycloadducts 10 and 11 , respectively. The constitutions of 9 , 10 , and 11 were confirmed by NMR spectroscopy and their crystal structures were determined. Reaction of 4‐chloro‐1,2‐dimethyl‐4‐tert‐butyl‐4‐silacyclopent‐1‐ene ( 2 c ) with KC8 yielded the corresponding disilane ( 12 ), which was characterized by X‐ray crystal structure analysis (triclinic, P$\bar 1$ ). DFT calculations are used to unveil the mechanistic scenario underlying the observed reactivity. 相似文献
10.
Dr. Zhe Li Yuan‐Ye Jiang Prof. Dr. Yao Fu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(14):4345-4357
Ni‐catalyzed cross‐coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 ( L1 =trans‐N,N′‐dimethyl‐1,2‐cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI( L1 )X] (X=Cl, Br) with 9‐borabicyclo[3.3.1]nonane (9‐BBN)R1 to produce [NiI( L1 )(R1)], oxidative addition of R2X with [NiI( L1 )(R1)] to produce [NiIII( L1 )(R1)(R2)X] through a radical pathway, and C? C reductive elimination to generate the product and [NiI( L1 )X]. The transmetalation step is rate‐determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol?1). On the other hand, the cross‐coupling of alkyl chlorides can be catalyzed by Ni/ L2 ( L2 =trans‐N,N′‐dimethyl‐1,2‐diphenylethane‐1,2‐diamine) because the activation barrier of transmetalation with L2 is lower than that with L1 . Importantly, the Ni0–NiII catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [NiII( L1 )(R1)(R2)] is very difficult. 相似文献
11.
The method of native chemical ligation between an unprotected peptide α‐thioester and an N‐terminal cysteine–peptide to give a native peptide in aqueous solution is one of the most effective peptide ligation methods. In this work, a systematic theoretical study was carried out to fully understand the detailed mechanism of ligation. It was found that for the conventional native chemical ligation reaction between a peptide thioalkyl ester and a cysteine in combination with an added aryl thiol as catalyst, both the thiol‐thioester exchange step and the transthioesterification step proceed by an anionic concerted SN2 displacement mechanism, whereas the intramolecular rearrangement proceeds by an addition–elimination mechanism, and the rate‐limiting step is the thiol‐thioester exchange step. The theoretical method was then extended to study the detailed mechanism of the auxiliary‐mediated peptide ligation between a peptide thiophenyl ester and an N‐2‐mercaptobenzyl peptide in which both the thiol‐thioester exchange step and intramolecular acyl‐transfer step proceed by a concerted SN2‐type displacement mechanism. The energy barrier of the thiol‐thioester exchange step depends on the side‐chain steric hindrance of the C‐terminal amino acid, whereas that of the acyl‐transfer step depends on the side‐chain steric hindrance of the N‐terminal amino acid. 相似文献
12.
13.
Dr. Alessandro Venturini Dr. Andrea Barbieri Prof. Dr. Joost N. H. Reek Dr. Dennis G. H. Hetterscheid 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(18):5358-5368
Catalytic water oxidation at Ir (OH)+ ( Ir =IrCp*(Me2NHC), where Cp*=pentamethylcyclopentadienyl and Me2NHC=N,N′‐dimethylimidazolin‐2‐ylidene) can occur through various competing channels. A potential‐energy surface showing these various multichannel reaction pathways provides a picture of how their importance can be influenced by changes in the oxidant potential. In the most favourable calculated mechanism, water oxidation occurs via a pathway that includes four sequential oxidation steps, prior to formation of the O?O bond. The first three oxidation steps are exothermic upon treatment with cerium ammonium nitrate and lead to formation of Ir V(?O)(O . )+, which is calculated to be the most stabile species under these conditions, whereas the fourth oxidation step is the potential‐energy‐determining step. O?O bond formation takes place by coupling of the two oxo ligands along a direct pathway in the rate‐limiting step. Dissociation of dioxygen occurs in two sequential steps, regenerating the starting material Ir (OH)+. The calculated mechanism fits well with the experimentally observed rate law: v=kobs[ Ir ][oxidant]. The calculated effective barrier of 24.6 kcal mol?1 fits well with the observed turnover frequency of 0.88 s?1. Under strongly oxidative conditions, O?O bond formation after four sequential oxidation steps is the preferred pathway, whereas under milder conditions O?O bond formation after three sequential oxidation steps becomes competitive. 相似文献
14.
15.
16.
The potential‐energy surfaces of the reactions of dirhodium tetracarboxylate (Rh2II,II) catalyzed nitrene (NR) insertion into C H bonds were examined by a DFT computational study. A pure Becke exchange functional (B88) rather than a hybrid exchange functional (B3, BHandH) was found to be appropriate for the calculation of the energy difference between the singlet and triplet Rh2II,II–NH nitrene species. Rh2II,II–NR1 (R1=(S)‐2‐methyl‐1‐butylformyl) is thermodynamically more favorable with a free energy lower than that of Rh2II,II–N(PhI)R1. The singlet and triplet states of Rh2II,II–NR1 have similar stability. Singlet Rh2II,II–NR1 undergoes a concerted NR insertion into the C H bond with simultaneous formation of the N H and N C bonds during C H bond cleavage; triplet Rh2II,II–NR1 undergoes H atom abstraction to produce a diradical, followed by subsequent bond formation by diradical recombination. The singlet pathway is favored over the triplet in the context of the free energy of activation and leads to the retention of the chirality of the C atom in the NR insertion product. The reactivities of the C H bonds toward the nitrene‐insertion reaction follow the order tertiary>secondary>primary. Relative reaction rates were calculated for the six reaction pathways examined in this work. 相似文献
17.
18.
Prof. Dr. Xian‐Yong Pang Chang Liu Dui‐Chun Li Prof. Cun‐Qin Lv Prof. Dr. Gui‐Chang Wang 《Chemphyschem》2013,14(1):204-212
The reaction mechanism of CO oxidation on the Co3O4 (110) and Co3O4 (111) surfaces is investigated by means of spin‐polarized density functional theory (DFT) within the GGA+U framework. Adsorption situation and complete reaction cycles for CO oxidation are clarified. The results indicate that 1) the U value can affect the calculated energetic result significantly, not only the absolute adsorption energy but also the trend in adsorption energy; 2) CO can directly react with surface lattice oxygen atoms (O2f/O3f) to form CO2 via the Mars–van Krevelen reaction mechanism on both (110)‐B and (111)‐B; 3) pre‐adsorbed molecular O2 can enhance CO oxidation through the channel in which it directly reacts with molecular CO to form CO2 [O2(a)+CO(g)→CO2(g)+O(a)] on (110)‐A/(111)‐A; 4) CO oxidation is a structure‐sensitive reaction, and the activation energy of CO oxidation follows the order of Co3O4 (111)‐A(0.78 eV)>Co3O4 (111)‐B (0.68 eV)>Co3O4 (110)‐A (0.51 eV)>Co3O4 (110)‐B (0.41 eV), that is, the (110) surface shows higher reactivity for CO oxidation than the (111) surface; 5) in addition to the O2f, it was also found that Co3+ is more active than Co2+, so both O2f and Co3+ control the catalytic activity of CO oxidation on Co3O4, as opposed to a previous DFT study which concluded that either Co3+ or O2f is the active site. 相似文献
19.
Konstantinos D. Papavasileiou Theodora D. Tzima Yiannis Sanakis Dr. Vasilios S. Melissas Dr. 《Chemphyschem》2007,8(18):2595-2602
The present study employs a complete theoretical investigation, at the B3LYP/cc‐pVTZ level of theory, of the interactions between the tyrosyl radical and nitric oxide, exploring in detail the nitrotyrosine formation radical mechanism. Tyrosyl radicals play an essential role in catalytic reactions of numerous enzymes and biological systems have regulated appropriate mechanisms for their formation. Nitric oxide reacts with the tyrosyl radical and affords a weak intermediate complex which, through a sequence of non‐ionic water catalyzed and biologically feasible intermediate reactions, yields the iminoxyl radical. The iminoxyl radical further combines with hydroxyl radical, a species present in pathophysiological conditions, to yield nitrotyrosine. 相似文献
20.
A Theoretical and Experimental Study of the Effects of Silyl Substituents in Enantioselective Reactions Catalyzed by Diphenylprolinol Silyl Ether 下载免费PDF全文
Prof. Dr. Yujiro Hayashi Daichi Okamura Tatsuya Yamazaki Yasuto Ameda Hiroaki Gotoh Dr. Seiji Tsuzuki Dr. Tadafumi Uchimaru Prof. Dr. Dieter Seebach 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(51):17077-17088
The effect of silyl substituents in diphenylprolinol silyl ether catalysts was investigated. Mechanistically, reactions catalyzed by diphenylprolinol silyl ether can be categorized into three types: two that involve an iminium ion intermediate, such as for the Michael‐type reaction (type A) and the cycloaddition reaction (type B), and one that proceeds via an enamine intermediate (type C). In the Michael‐type reaction via iminium ions (type A), excellent enantioselectivity is realized when the catalyst with a bulky silyl moiety is employed, in which efficient shielding of a diastereotopic face of the iminium ion is directed by the bulky silyl moiety. In the cycloaddition reaction of iminium ions (type B) and reactions via enamines (type C), excellent enantioselectivity is obtained even when the silyl group is less bulky and, in this case, too much bulk reduces the reaction rate. In other cases, the yield increases when diphenylprolinol silyl ethers with bulky substituents are employed, presumably by suppressing side reactions between the nucleophilic catalyst and the reagent. The conformational behaviors of the iminium and enamine species have been determined by theoretical calculations. These data explain the effect of the bulkiness of the silyl substituent on the enantioselectivity and reactivity of the catalysts. 相似文献