首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmonic materials have drawn emerging interest, especially in nontraditional semiconductor nanostructures with earth‐abundant elements and low resistive loss. However, the actualization of highly efficient catalysis in plasmonic semiconductor nanostructures is still a challenge, owing to the presence of surface‐capping agents in their synthetic procedures. To fulfill this, a facile non‐aqueous procedure was employed to prepare well‐defined molybdenum oxide nanosheets in the absence of surfactants. The obtained MoO3‐x nanosheets display intense absorption in a wide range attributed to the localized surface plasmon resonances, which can be tuned from the visible to the near‐infrared region. Herein, we demonstrate that such plasmonic semiconductor nanostructures could be used as highly efficient catalysts that dramatically enhance the hydrogen‐generation activity of ammonia borane under visible light irradiation.  相似文献   

2.
In this study, we developed an approach to fabricate novel 1D Ag NWs‐Ag NPs hybrid substrate for enhanced fluorescene detection of protoporphyrin IX (PpIX) based on surface plasmon‐enhanced fluorescence. The Ag NWs‐Ag NPs hybrid was synthesized by combining the hydrothermal method and self‐assembly method with the asisstance of polyvinylpyrrolidone (PVP). When the Ag NWs‐Ag NPs hybrid was deposited on the glass substrate and employed as active substrate to detect PpIX, the fluorescence intensity of PpIX was enhanced greatly due to the coupling effect of localized surface plasmon‐localized surface plasmon (LSP‐LSP) and localized surface plasmon‐surface plasmon propagation (LSP‐SPP) which induced great enhancement of the electromagnetic field. Furthermore, the enhancement effect was approximately linear when the concentration of PpIX was ranged from 1×10?7 mol/L to 2×10?5 mol/L, and the photobleaching phenomenon of PpIX was reduced greatly, indicating that the fabricated Ag NWs‐Ag NPs hybrid substrate had well performance for PpIX imaging. This work provides an effective approach to prepare highly sensitive and stable fluorescence enhancement substrate, and has great potential application in fluorescence imaging.  相似文献   

3.
Systematically controlling the morphology of nanoparticles, especially those growing from gold nanorod (AuNR) seeds, are underexplored; however, the AuNR and its related morphologies have shown promises in many applications. Herein we report the use of programmable DNA sequences to control AuNR overgrowth, resulting in gold nanoparticles varying from nanodumbbell to nanooctahedron, as well as shapes in between, with high yield and reproducibility. Kinetic studies revealed two representative pathways for the shape control evolving into distinct nanostructures. Furthermore, the geometric and plasmonic properties of the gold nanoparticles could be precisely controlled by adjusting the base compositions of DNA sequences or by introducing phosphorothioate modifications in the DNA. As a result, the surface plasmon resonance (SPR) peaks of the nanoparticles can be fine‐tuned in a wide range, from visible to second near‐infrared (NIR‐II) region beyond 1000 nm.  相似文献   

4.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

5.
6.
The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all‐solution‐processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic‐enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible‐light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade‐off for enhanced near‐band‐edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.  相似文献   

7.
The visible‐light response of Au nanoparticles (AuNPs) assembled on rGO through different molecular bridges was investigated by transient photocurrent generation. We prepared rGO with two self‐assembled monolayers (SAMs), one linear and the other with aromatic triazoles through a click cycloaddition reaction. A fivefold photocurrent enhancement was observed for triazole linkers over the aminopropyltrimethoxysilane (APTMS) linker. Cyclic voltammetry (CV) and impedance measurements also suggest fast electron transfer on account of the low resistance offered by the click‐modified rGO surface whereby introduction of triazoles offers the efficient bridge between the donor AuNPs and acceptor rGO.  相似文献   

8.
Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li‐ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one‐pot synthesis of carbon‐coated nanostructured iron oxide on few‐layer graphene through high‐pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon‐coated iron oxide, while the graphene acts as a high‐surface‐area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative‐electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.  相似文献   

9.
SERS you right: The plasmon heating of gold nanoshells is exploited to yield the local conversion of amorphous TiO2 into anatase on the surface of polymeric colloidal crystals (see scheme). The resulting Au/TiO2 spots are active substrates for surface‐enhanced Raman spectroscopy and allow surface reactions and processes to be followed directly on‐site.

  相似文献   


10.
A new and simple procedure to enhance the fluorescence of analytes on the surfaces of a solid substrate is demonstrated based on Ag@SiO2 nanoparticles. Two kinds of silver–silica core–shell nanoparticles with shell thicknesses of around 3 and 15 nm have been prepared and used as enhancing agents, respectively. By simply pipetting drops of the enhancing agents onto substrate surfaces with Rose Bengal monolayers, an enhancement of about 27 times, compared with the control sample, is achieved by using the Ag@SiO2 nanoparticles with shells of about 3 nm, whereas an enhancement of around 11.7 times is obtained when using those with thicker shells. The effects of shell thickness and surface density of the enhancing agents on the enhancement have been investigated experimentally. The results show that this method can be potentially helpful in fluorescence‐based surface analysis.  相似文献   

11.
12.
The first observation of strong directional surface‐plasmon‐coupled emission (SPCE) of Rhodamine 110 in silica nanofilms deposited on silver nanolayers is reported. The preparation of the material is described in detail. The intensity of SPCE exceeds 10 times that of free space fluorescence and total linear light polarization in the SPCE ring is observed. A new experimental setup and an original data collection method is presented. Our material completely preserves its fluorescence properties for at least eight months.  相似文献   

13.
WO3?x nanowires were successfully synthesized through a simple surfactant‐free solvothermal method. These nanowires exhibit strong plasmonic absorption in the visible and near‐infrared region owing to the abundant oxygen vacancies. The plasmon excitation of these WO3?x nanowires provide five times enhancement on the hydrogen generation from ammonia borane.  相似文献   

14.
Metal‐enhanced fluorescence of semiconductor nanocrystals (NCs) is investigated. There is very little attention paid to the metal‐enhanced fluorescence in aqueous solution, which has great potential applications in bioscience. In this work, we directly observe metal‐enhanced fluorescence of CdTe NC solution by simply mixing CdTe NCs and Au nanoparticles, both of which are negatively charged. In order to study this kind of photoluminescence enhancement in aqueous solutions, we propose a calibration method, which takes into account the light attenuation in solutions. After consideration of the light weakening in transmission, the maximal PL enhancement is about 3 times as large as the ones without Au NPs. Some factors related to the enhanced magnitude of fluorescence, for instance, the concentration and the molar feed ratio of CdTe NCs and Au NPs, are studied in detail. Furthermore, the decreased lifetimes of CdTe NCs induced by Au NPs are also obtained, which are in accord with the enhancement of the photoluminescence.  相似文献   

15.
A simple strategy was used to enhance band emission through the transfer of defect emission from ZnO to Au by using the energy match between the defect emission of ZnO and the surface plasmon absorbance of Au NPs through decorating the surface of ZnO nanoflowers with Au nanoparticles (Au NPs). The ZnO nanostructure, which was comprised of six nanorods that were attached on one side in a flower‐like fashion, was synthesized by using a hydrothermal method. The temperature‐dependent morphology and detailed growth mechanism were studied. The influence of the density of the Au NPs that were deposited onto the surface of ZnO on photoluminescence was investigated to optimize the configuration of the ZnO/Au system in terms of the maximum band emission. The sequential transfer of defect energy from ZnO to Au and electron transfer from excited Au to ZnO was proposed as a possible mechanism for the enhanced band emission.  相似文献   

16.
We explore the application of a previously suggested formula for determining the degree of charge transfer in surface‐enhanced Raman scattering (SERS). SERS is often described as a phenomenon which obtains its enhancement from three major sources, namely the surface plasmon resonance, charge‐transfer resonances as well as possible molecular resonances. At any chosen excitation wavelength, it is possible to obtain contributions from several sources and this has led to considerable confusion. The formula for the degree of charge transfer enables one to separate these effects, but it requires that spectra be obtained either at two or more different excitation wavelengths or as a function of applied potential. We apply this formula to several examples, which display rather large charge‐transfer contributions to the spectrum. These are p‐aminothiophenol (PATP), tetracyano‐ ethylene (TCNE) and piperidine. In PATP we can show that several lines of the same symmetry give the same degree of charge transfer. In TCNE we are able to identify the charge‐transfer transition, which contributes to the effect, and are able to independently determine the degree of charge transfer by wavenumber shifts. This enables a comparison of the two techniques of measurement. In piperidine, we present an example of molecule to metal charge transfer and show that our definition of charge transfer is independent of direction.  相似文献   

17.
Three‐dimensional nanostructured metallic substrates for enhanced vibrational spectroscopy are fabricated by self‐assembly. Nanostructures consisting of one to 20 depositions of 13 nm‐diameter Au nanoparticles (NPs) on Au films are prepared and characterized by means of AFM and UV/Vis reflection–absorption spectroscopy. Surface‐enhanced polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) is observed from Au NPs modified by the probe molecule 4‐hydroxythiophenol. The limitation of this kind of substrate for surface‐enhanced PM‐IRRAS is discussed. The surface‐enhanced Raman scattering (SERS) from the same probe molecule is also observed and the effect of the number of Au‐NP depositions on the SERS efficiency is studied. The SERS signal from the probe molecule maximizes after 11 Au‐NP depositions, and the absolute SERS intensities from different batches are reproducible within 20 %. In situ electrochemical SERS measurements show that these substrates are stable within the potential window between ?800 and +200 mV (vs. Ag/AgCl/sat. Cl?).  相似文献   

18.
Reversed photoresponse: Indium tin oxide (ITO)/Au nanoparticle (NP)/TiO2 electrodes (see picture) exhibit cathodic photocurrents and positive photopotentials under visible light, whereas ITO/TiO2/Au NP electrodes show an inverted response. This behavior indicates that electron transfer occurs from the plasmon‐excited Au NPs to the TiO2 film. An enhanced O2 photoreduction activity is found for ITO/Au NP/TiO2/Pt electrodes.

  相似文献   


19.
20.
Gold caps on silicon nanowires are selectively coated with silver by autometallography (electroless deposition). Changing the conditions of silver deposition, a variety of different coating morphologies can be produced (see figure). The different silver coating morphologies are investigated in terms of their capabilities for surface enhanced Raman scattering (SERS) experiments.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号