首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We report the synthesis and characterization of a group of carboxyl-functionalized poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) that were used for the stabilization of superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles (NPs). Folic acid (FA) molecules were conjugated onto the dendrimer surfaces in an attempt to achieve specific targeted imaging of tumor cells that overexpress FA receptors using dendrimer-stabilized Fe(3)O(4) NPs. Fe(3)O(4) NPs were synthesized using controlled co-precipitation of Fe(ii) and Fe(iii) ions and the formed dendrimer-stabilized Fe(3)O(4) NPs were characterized using transmission electron microscopy (TEM) and polyacrylamide gel electrophoresis (PAGE). The intracellular uptake of dendrimer-stabilized Fe(3)O(4) NPs was tested in vitro using KB cells (a human epithelial carcinoma cell line) that overexpress FA receptors. It appears that carboxyl-terminated PAMAM dendrimer-stabilized Fe(3)O(4) NPs can be uptaken by KB cells regardless of the repelling force between the negatively charged cells and the negatively charged particles. In the presence of a large amount of carboxyl terminal groups on the dendrimer surface, the receptor-mediated endocytosis of Fe(3)O(4) NPs stabilized by FA-modified dendrimers was not facilitated. It implies that the surface charge of dendrimer-stabilized magnetic iron oxide NPs in biological medium is an important factor influencing their biological performance.  相似文献   

2.
8‐Hydroxy‐2′‐deoxyguanosine (8‐OHdG) detection by high performance liquid chromatography (HPLC) with amperometric detection was studied using a Au electrode modified with different dendrimer based thin films. Gold electrode is thiol‐modified, forming self‐assembled monolayers on which different generation PAMAM dendrimers with terminal functional groups ? COOH and ? NH2 have been attached using peptidic bonds. Results obtained in synthetic samples show low limits of detection and quantification for 8‐OHdG (1.2×10?9 and 3.7×10?9 M respectively), with matrix interference elimination, thus avoiding sample pretreatment. Best results are obtained with electrodes modified with aliphatic amino thiols and 3.5 and 4.5 generation carboxylated dendrimers (Au/AET/DG3.5 and Au/AET/DG4.5), demonstrating that these materials constitute a good alternative for 8‐OHdG determination in biological fluids.  相似文献   

3.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   

4.
Electrochemical oxidation of a phospholipid, phosphatidylcholine (PC), was accomplished at a 4‐aminothiophenol (ATP)‐modified gold electrode coated with a layer‐by‐layer assembly of an electrochemical catalyst (dirhodium phosphomolybdic acid), a trapping agent for PC (a cyclophane, CP, derivative, 1,4‐xylylene‐1,4‐phenylene‐diacetate), and a spacer (generation‐4 polyamidoamine dendrimer, PAMAM). The layer‐by‐layer assembly process and the trapping of PC was verified by quartz crystal microbalance measurements; Au|ATP|CP|PAMAM|CP trapped (1.5±0.4)×10?9 mol cm?2 of PC. The electrocatalytic oxidation of PC yielded a current that varied linearly with concentration over the range 1–50 μM; the R2 value was 0.996.  相似文献   

5.
We report here a facile method to obtain folic acid (FA)‐protected gold nanoparticles (Au NPs) by heating an aqueous solution of HAuCl4/FA in which FA acts as both the reducing and stabilizing agent. The successful formation of FA‐protected Au NPs is demonstrated by UV/Vis spectroscopy, transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The intracellular uptake of these nanoparticles is facilitated by HeLa cells overexpressing the folate reporter, which itself is significantly inhibited by free FA in a competitive assay as quantified by inductively coupled plasma mass spectroscopy (ICP‐MS). This simple one‐step approach affords a new perspective for creating functional nanomaterials, and the resulting biocompatible, functional Au NPs may find some prospective applications in various biomedical fields.  相似文献   

6.
This work reports a new electrochemical monitoring platform for sensitive detection of Cu2+ coupling click chemistry with nanogold‐functionalized PAMAM dendrimer (AuNP‐PAMAM). The system involved an alkyne‐modified carbon electrode and an azide‐functionalized AuNP‐PAMAM. Initially, the added Cu2+ was reduced to Cu+ by the ascorbate, and then the azide‐modified AuNP‐PAMAM was covalently conjugated to the electrode via Cu+‐catalyzed azide‐alkyne click reaction. The carried AuNPs accompanying PAMAM dendrimer could be directly monitored by stripping voltammetry after acidic pretreatment. By introduction of high‐loading PAMAM dendrimer with gold nanoparticles, as low as 2.8 pM Cu2+ (ppt) could be detected, which was 125‐fold lower than that of gold nanoparticle‐based labeling strategy. The method exhibited high specificity toward target Cu2+ against other potentially interfering ions, and was applicable for monitoring Cu2+ in drinking water with satisfactory results.  相似文献   

7.
We sought to produce dendrimers conjugated to different biofunctional moieties (fluorescein [FITC] and folic acid [FA]), and then link them together using complementary DNA oligonucleotides to produce clustered molecules that target cancer cells that overexpress the high-affinity folate receptor. Amine-terminated, generation 5 polyamidoamine (G5 PAMAM) dendrimers are first partially acetylated and then conjugated with FITC or FA, followed by the covalent attachment of complementary, 5'-phosphate-modified 34-base-long oligonucleotides. Hybridization of these oligonucleotide conjugates led to the self-assembly of the FITC- and FA-conjugated dendrimers. In vitro studies of the DNA-linked dendrimer clusters indicated specific binding to KB cells expressing the folate receptor. Confocal microscopy also showed the internalization of the dendrimer cluster. These results demonstrate the ability to design and produce supramolecular arrays of dendrimers using oligonucleotide bridges. This will also allow for further development of DNA-linked dendrimer clusters as imaging agents and therapeutics.  相似文献   

8.
Gold electrodes were modified with submonolayers of 3‐mercaptopropionic acid and further reacted with poly(amidoamine) (PAMAM) dendrimers to obtain thin films. The high affinity of PAMAM dendrimer for nano‐Au with its amine groups was used to realize the role of nano‐Au as an intermediator to immobilize the enzyme of tyrosinase. The characterization of the modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy (AFM). Tyrosinase can catalyze the oxidation of catechol to o‐benzoquinone. When penicillamine was added to the solution, it reacted with o‐benzoquinone to form the corresponding thioquinone derivatives, which resulted in decrease of the reduction current of o‐benzoquinone. Based on this, a new electrochemical sensor for determination of penicillamine has been developed.  相似文献   

9.
Au‐Fe3O4 nanoparticles were widely used as nanoplatforms for biologic applications through readily further functionalization. Dopamine (DA)‐coated superparamagnetic iron oxide (SPIO) nanoparticles (DA@Fe3O4) have been successfully synthesized using a one‐step process by modified coprecipitation method. Then 2–3 nm gold nanoparticles were easily conjugated to DA@Fe3O4 nanoparticles by the electrostatic force between gold nanoparticles and amino groups of dopamine to afford water‐soluble Au‐Fe3O4 hybrid nanoparticles. A detailed investigation by dynamic light scatting (DLS), transmission electron microscopy (TEM), fourier transform infrared (FT‐IR) and X‐ray diffraction (XRD) were performed in order to characterize the physicochemical properties of the hybrid nanoparticles. The hybrid nanoparticles were easily functionalized with a targeted small peptide A54 (AGKGTPSLETTP) and fluorescence probe fluorescein isothiocyanate (FITC) for liver cancer cell BEL‐7402 imaging. This simple approach to prepare hybrid nanoparticles provides a facile nanoplatform for muti‐functional derivations and may be extended to the immobilization of other metals or bimolecular on SPIO surface.  相似文献   

10.
A novel hydrogen peroxide (H2O2) sensor was fabricated by using a submonolayer of 3‐mercaptopropionic acid (3‐MPA) adsorbed on a polycrystalline gold electrode further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) to obtain a film on which Prussian Blue (PB) was later coordinated to afford a mixed and stable electrocatalytic layer for H2O2 reduction. On the basis of the electrochemical behaviors, atomic force microscopy (AFM) and X‐ray photoelectron spectra (XPS), it is suggested that the PB molecules are located within the dendritic structure of the surface attached PAMAM dendrimers. It was found that the PB/PAMAM/3‐MPA/Au modified electrode showed an excellent electrocatalytic activity for H2O2 reduction. The effects of applied potential and pH of solution upon the response of the modified electrode were investigated for an optimum analytical performance. Even in the presence of dissolved oxygen, the sensor exhibited highly sensitive and rapid response to H2O2. The steady‐state cathodic current responses of the modified electrode obtained at ?0.20 V (vs. SCE) in air‐saturated 0.1 mol L?1 phosphate buffer solution (PBS, pH 6.50) showed a linear relationship to H2O2 concentration ranging from 1.2×10?6 mol L?1 to 6.5×10?4 mol L?1 with a detection limit of 3.1×10?7 mol L?1. Performance of the electrode was evaluated with respected to possible interferences such as ascorbic acid and uric acid etc. The selectivity, stability, and reproducibility of the modified electrode were satisfactory.  相似文献   

11.
This study investigates transgeden (TGD) dendrimers (polyamidoamine (PAMAM)‐type dendrimers modified with rigid polyphenylenevinylene (PPV) cores) and compares their heparin‐binding ability with commercially available PAMAM dendrimers. Although the peripheral ligands are near‐identical between the two dendrimer families, their heparin binding is very different. At low generation (G1), TGD outperforms PAMAM, but at higher generation (G2 and G3), the PAMAMs are better. Heparin binding also depends strongly on the dendrimer/heparin ratio. We explain these effects using multiscale modelling. TGD dendrimers exhibit “shape‐persistent multivalency”; the rigidity means that small clusters of surface amines are locally well optimised for target binding, but it prevents the overall nanoscale structure from rearranging to maximise its contacts with a single heparin chain. Conversely, PAMAM dendrimers exhibit “adaptive multivalency”; the flexibility means individual surface ligands are not so well optimised locally to bind heparin chains, but the nanostructure can adapt more easily and maximise its binding contacts. As such, this study exemplifies important new paradigms in multivalent biomolecular recognition.  相似文献   

12.
Simultaneous targeted cancer imaging, therapy and real‐time therapeutic monitoring can prevent over‐ or undertreatment. This work describes the design of a multifunctional nanomicelle for recognition and precise near‐infrared (NIR) cancer therapy. The nanomicelle encapsulates a new pH‐activatable fluorescent probe and a robust NIR photosensitizer, R16FP, and is functionalized with a newly screened cancer‐specific aptamer for targeting viable cancer cells. The fluorescent probe can light up the lysosomes for real‐time imaging. Upon NIR irradiation, R16FP‐mediated generation of reactive oxygen species causes lysosomal destruction and subsequently trigger lysosomal cell death. Meanwhile the fluorescent probe can reflect the cellular status and in situ visualize the treatment process. This protocol can provide molecular information for precise therapy and therapeutic monitoring.  相似文献   

13.
Quantum dots (QDs) hold great promise for the molecular imaging of cancer because of their superior optical properties. Although cell‐surface biomarkers can be readily imaged with QDs, non‐invasive live‐cell imaging of critical intracellular cancer markers with QDs is a great challenge because of the difficulties in the automatic delivery of QD probes to the cytosol and the ambiguity of intracellular targeting signals. Herein, we report a new type of DNA‐templated heterobivalent QD nanoprobes with the ability to target and image two spatially isolated cancer markers (nucleolin and mRNA) present on the cell surface and in the cell cytosol. Bypassing endolysosomal sequestration, this type of QD nanoprobes undergo macropinocytosis following the nucleolin targeting and then translocate to the cytosol for mRNA targeting. Fluorescence resonance energy transfer (FRET) based confocal microscopy enables unambiguous signal deconvolution of mRNA‐targeted QD nanoprobes inside cancer cells.  相似文献   

14.
Poly(amidoamine) (PAMAM) dendrimer-based nanodevices are of recent interest in targeted cancer therapy. Characterization of mono- and multifunctional PAMAM-based nanodevices remains a great challenge because of their molecular complexity. In this work, various mono- and multifunctional nanodevices based on PAMAM G5 (generation 5) dendrimer were characterized by UV-Vis spectrometry, (1)H NMR, size exclusion chromatography (SEC), and capillary electrophoresis (CE). CE was extensively utilized to measure the molecular heterogeneity of these PAMAM-based nanodevices. G5-FA (FA denotes folic acid) conjugates (synthesized from amine-terminated G5.NH(2) dendrimer, approach 1) with acetamide and amine termini exhibit bimodal or multi-modal distributions. In contrast, G5-FA and bifunctional G5-FA-MTX (MTX denotes methotrexate) conjugates with hydroxyl termini display a single modal distribution. Multifunctional G5.Ac(n)-FI-FA, G5.Ac(n)-FA-OH-MTX, and G5.Ac(n)-FI-FA-OH-MTX (Ac denotes acetamide; FI denotes fluorescein) nanodevices (synthesized from partially acetylated G5 dendrimer, approach 2) exhibit a monodisperse distribution. It indicates that the molecular distribution of PAMAM conjugates largely depends on the homogeneity of starting materials, the synthetic approaches, and the final functionalization steps. Hydroxylation functionalization of dendrimers masks the dispersity of the final PAMAM nanodevices in both synthetic approaches. The applied CE analysis of mono- and multifunctional PAMAM-based nanodevices provides a powerful tool to evaluate the molecular heterogeneity of complex dendrimer conjugate nanodevices for targeted cancer therapeutics.  相似文献   

15.
In this paper, the electrochemically reduced graphene oxide‐poly(amidoamine) hybrid (ErGO‐PAMAM) have been used for fabrication of TNT electrochemical sensor. The prepared modified electrode is characterized with X‐ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FT‐IR), electrochemical impedance spectroscopy (EIS), energy‐dispersive X‐ray (EDX) spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). Based on obtained results, it is can be seen that the ErGO‐PAMAM/GCE has high response to TNT than the other graphene based modified electrodes. The resulting electrochemical sensor exhibited good response to TNT with linear range from 0.05 to 1.2 ppm with a low detection limit of 0.0015 ppm.  相似文献   

16.
Polyamidoamine (PAMAM) is one of the most interesting types of hyperbranched polymers that carry a large number of amino groups on its surface. PAMAM has gained significant attention from synthetic organic chemists due to its structural characteristics, controllable structure, inner porosity, and ability to trap a wide range of ions and molecules. So, in this work, the PAMAM dendrimer was synthesized, grafted onto the surface of magnetite nanoparticles, and the resulting hybrid nanoparticles were then employed as suitable host for immobilizing cobalt nanoparticles. The newly developed catalyst was well characterized by Fourier transform‐infrared, X‐ray diffraction, thermogravimetric analysis, field emission‐scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, element mapping and energy‐dispersive X‐ray analysis. The efficiency of the as‐prepared nanocatalyst was evaluated for the Mizoroki–Heck cross‐coupling reactions. The MNP@PAMAM‐Co represented perfect catalytic efficiency and high selectivity for the Mizoroki–Heck cross‐coupling reaction compared with previously reported catalysts. The catalyst separation from the reaction mixture was easily achieved with the assistance of an external magnetic field, and its recycling was also investigated for five consecutive runs. Hot filtration confirmed no leaching of the active metal during the Heck coupling.  相似文献   

17.
Using a successive method, PAMAM dendrimer‐encapsulated bimetallic PdPt nanoparticles have been successfully prepared with core‐shell structures (Pd@Pt DENs). Evidenced by UV‐vis spectra, high resolution transmission electron microscopy, and X‐ray energy dispersive spectroscopy (EDS), the obtained Pd@Pt DENs are monodispersed and located inside the cavity of dendrimers, and they show a different structure from monometallic Pt or Pd and alloy PdPt DENs. The core‐shell structure of Pd@Pt DENs is further confirmed by infrared measurements with carbon monoxide (IR‐CO) probe. In order to prepare Pd@Pt DENs, a required Pd/Pt ratio of 1:2 is determined for the Pt shell to cover the Pd core completely. Finally, a mechanism for the formation of Pd@Pt DENs is proposed.  相似文献   

18.
The Wnt/β‐catenin signaling pathway is shown to play a significant role in the control of the survival, proliferation, and differentiation of hematopoietic cells. Studies have confirmed that aberrant activation of canonical Wnt signaling occurs in various forms of leukemia, and is crucial for chronic lymphocytic leukemia (CLL) pathogenesis. The aim of the study is to evaluate the influence of maltotriose (M3) modified fourth generation poly(propylene imine) dendrimers (PPI‐G4) on Wnt/β‐catenin pathway gene expression in CLL (MEC‐1) cells and to compare these findings with those obtained with fludarabine (FA). Microarray data analysis reveals seven of 19 Wnt/β‐catenin pathway genes whose expression changes significantly during dendrimer and FA treatment: WNT10A, WNT6 , and CDH1 among others. PPI‐G4‐M3 is already known to influence MEC‐1 cell apoptosis and proliferation. The obtained results suggest that the reduction in cell survival under the influence of glycodendrimers and FA may be due to loss of Wnt signaling.  相似文献   

19.
Lower generations of polyamidoamine (PAMAM) dendrimers were peripherally modified with anthracene moieties, and excimer emission from anthracene chromophores was investigated in an acetonitrile–water mixture at acidic and basic pH values. Results from fluorescence spectroscopic experiments suggest that 1) the propensity of anthracene‐modified PAMAM dendrimers to aggregate in acetonitrile is substantial in the presence of 15–20 vol % of water, and 2) aggregate formation in anthracene‐modified PAMAM dendrimers leads to unique morphologies in the ground state, where the anthracene units are pre‐arranged to form stable excimers upon photoexcitation. Three types of anthracene excimers are generated in the system, with face‐to‐face, angular, and T‐shaped geometry. The formation of different types of anthracene excimers was confirmed by steady‐state and time‐resolved fluorescence spectroscopic experiments. Experimental results further suggest that it is feasible to alter the type of excimer formed by anthracene units attached to the PAMAM dendrimers through altering the propensity for ground‐state aggregation. Most excitingly, increased π conjugation in the molecular framework of anthracene‐substituted PAMAM dendrimers leads to intense and exclusive excimer emission from anthracene at room temperature.  相似文献   

20.
We designed and constructed a beamline BL36XU at the 8 GeV synchrotron radiation facility SPring‐8 to provide information required for the development of next‐generation polymer electrolyte fuel cells (PEFCs) by clarifying the dynamic aspects of structures and electronic states of cathode catalysts under PEFC operating conditions and in the deterioration processes by accelerated durability test protcols. To investigate the mechanism and degradation process for the cathode electrocatalysis in practical PEFCs, we developed advanced time‐ and spatially‐resolved in‐situ/operando X‐ray absorption fine structure measurement systems and complementary analytical systems (X‐ray emission spectroscopy (XES), X‐ray diffraction (XRD), X‐ray computer tomography (CT) and hard X‐ray photoelectron spectroscopy (HAXPES)) and combined them to develop multi‐analytical systems at BL36XU. Multi‐analytical systems are very powerful for observing spatial‐temporal features of the transient processes occurring in complex systems such as PEFCs. This account describes the design, performance, and research results of the BL36XU and multi‐analytical in‐situ/operando systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号