首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aziridines are highly useful compounds as building blocks for the synthesis of important organic compounds. Amino acid synthesis by aziridine ring opening reaction is a good example to the use of aziridines. Although this reaction is studied by many groups, the synthesis of amino phosphonic acids is less explored. In this study, we have carried out the ring opening reaction of aziridinyl phosphonates with a variety of alcohols including the more functional propargylic and allylic alcohols. These reactions provided functionalized α‐amino‐β‐alkoxyphosphonates in 40–91 % yield.  相似文献   

2.
The quantum‐chemical calculations of the thermal ring opening of 1‐methyl‐2,3‐diphenyl‐ and 1,2,3‐triphenylaziridine with formation of the corresponding azomethine ylides of S‐, U‐, and W‐type as well as their cycloaddition to dimethyl acetylenedicarboxylate (DMAD) and dimethyl 2,3‐dicyanobut‐2‐enedioate, were performed at the DFT B3LYP/6‐31G(d) level of theory with the PCM solvation model. The calculations are in complete accordance with experimental results and explain the switch from the concerted to the non‐concerted pathway depending on substituents in the dipolarophile and the ylide. It was found that strong electron‐withdrawing substituents in dipolarophiles, such as in dialkyl dicyanobutenedioates, significantly reduce the barrier for the formation of zwitterionic intermediates in the reaction of azomethine ylides with such dipoles. This can render the stepwise cycloaddition competitive with the concerted one. However, the concertedness of the cycloaddition even to dipolarophiles with several electron‐withdrawing substituents is governed by a fine balance of electronic and steric effects in both ylide and dipolarophile counterparts. The hypothesis that introduction of substituents in the azomethine ylide that destabilize the positive charge in a corresponding zwitterion will favor the concerted cycloaddition even with dialkyl dicyanobutenedioates was tested theoretically and experimentally.  相似文献   

3.
蔺楠  王剑波等 《中国化学》2002,20(8):789-794
Electron impact-induced fragmentation mechanism of Trans-α-Aryl-β-enamino esters were investigated using mass-analyzed ion kinetic energy (MIKE) spectrometry and high resolution accurate mass data It was found that the main characteristic fragmentations of compounds studied were:an odd electron ion M^ -EtOH was formed by losing a neutral molecule of ethanol;and the skeletal rearrangements took place;and the ring opening reaction happened after losing a carbon monoxide;and the typical McLafferty rearrangement underwent in ester group.The cycliztion reation caused by losing neutral molecule of TsNH2 due to the ortho-effects of substituted group of gromatic ring was also observed.  相似文献   

4.
To expand upon the recent pioneering reports of catalyzed sp3 C?H fluorination methods, the next rational step is to focus on directing “radical‐based fluorination” more effectively. One potential solution entails selective C?C bond activation as a prelude to selective fluorination. Herein, we report the tandem photocatalyzed ring‐opening/fluorination reactions of cyclopropanols by 1,2,4,5‐tetracyanobenzene (TCB) and Selectfluor to afford a process tantamount to site‐selective β‐fluorination of carbonyl‐containing compounds. This new approach provides a synthetically mild and operationally simple route to otherwise difficult‐to‐prepare β‐fluorinated products in good yields and with good‐to‐excellent regioselectivity. Remarkably, substrates that contain other usually reactive (e.g., benzylic) sites undergo ring‐opening fluorination preferably. The versatility of this method to give cyclic β‐fluorides from tertiary cyclopropanols and γ‐fluoro alcohols is also highlighted.  相似文献   

5.
The strong binding ability of P‐ylides with transition metals limits the utilization of stabilized P‐ylide as nucleophiles in asymmetric organometallic catalysis. Herein we describe the first rhodium‐catalyzed asymmetric ring‐opening reaction of P‐ylides utilizing oxabicyclic alkenes as the electrophilic partner. Various P‐ylides including ester‐, ketone‐ and amide‐style P‐ylides are all applicable. This asymmetric reaction occurs through the cleavage of two bridgehead C?O bonds and the formation of two C?C bonds, and oxabenzonorbornadienes are used as 1,4‐biselectrophiles, thus providing access to benzonorcaradienes in good yields with high enantioselectivity and perfect diastereoselectivity. The present protocol also constitutes the first highly enantioselective direct catalytic asymmetric cyclopropanation of stabilized P‐ylide nucleophiles.  相似文献   

6.
Nucleophilic ring‐opening reactions of 3‐aryl‐1‐benzylaziridine‐2‐carboxylates were examined by using O‐nucleophiles and aromatic C‐nucleophiles. The stereospecificity was found to depend on substrates and conditions used. Configuration inversion at C(3) was observed with O‐nucleophiles as a major reaction path in the ring‐opening reactions of aziridines carrying an electron‐poor aromatic moiety, whereas mixtures containing preferentially the syn‐diastereoisomer were generally obtained when electron‐rich aziridines were used (Tables 1–3). In the reactions of electron‐rich aziridines with C‐nucleophiles, SN2 reactions yielding anti‐type products were observed (Table 4). Reductive ring‐opening reaction by catalytic hydrogenation of (+)‐trans‐(2S,3R)‐3‐(1,3‐benzodioxol‐5‐yl)aziridine‐2‐carboxylate (+)‐trans‐ 3c afforded the corresponding α‐amino acid derivative, which was smoothly transformed into (+)‐tert‐butyl [(1R)‐2‐(1,3‐benzodioxol‐5‐yl)‐1‐methylethyl]carbamate((+)‐ 14 ) with high retention of optical purity (Scheme 6).  相似文献   

7.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C? H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C? H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3)? C(sp3) bonds are elusive. Reported here is an asymmetric C? H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3)? C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

8.
Oligo(3‐OH butyrate)‐β‐cyclodextrin esters (PHB‐CD) were obtained through ring opening of β‐butyrolactone (β‐BL) in the presence of β‐cyclodextrin (CD) and (‐)‐sparteine (SP) as nucleophilic activator. The resulted reaction mixture was first separated in two fractions and then investigated through a deep mass spectrometry (MS) study performed on a liquid chromatography‐electrospray ionization‐quadrupole time of flight (LC‐ESI‐QTOF) instrument. LC MS and tandem MS structural assignment of the reaction products was completed by NMR. The performed analysis revealed that poly(3‐OH butyrate) homopolymers (PHB) are formed together with the PHB‐CD products. Secondary reactions resulting in the formation of crotonates were also proved to occur. A comparison between MS and NMR results demonstrated that more than one PHB oligomer is attached to the CD in the PHB‐CD product. The tandem MS fragmentation studies validated the proposed structure of CD derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
The ring‐opening reactions of N‐methyliminodiacetyl (MIDA) α‐chloroepoxyboronates with different nucleophiles allow the modular synthesis of a diverse array of organoboronates. These include seven types of α‐functionalized acylboronates and seven types of borylated heteroarenes, some of which are difficult‐to‐access products using alternative methods. The common synthons, α‐chloroepoxyboronates, could be viably synthesized by a two‐step procedure from the corresponding alkenyl MIDA boronates. Mild reaction conditions, good functional‐group tolerance, and generally good efficiency were observed. The utility of the products was also demonstrated.  相似文献   

10.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Nucoleaophilic substitution by activated organic anions and single and two electron transfer in ring opening reactions of 4‐membered β‐lactones are described.  相似文献   

12.
The oxidative contraction of α‐formal ketone to form continuous all carbon chiral centers promoted by H2O2 is widely used in natural product total synthesis. Typically, using this transformation, chiral cyclic ketones are obtained as the major products and ring‐opening products as the minor products. Herein, DFT calculations have been used to investigate the detailed reaction mechanism and chemoselectivity. In addition, with the widely accepted mechanism of H2O2‐promoted transformation, our systematic investigation with various explicit‐solvent‐model calculations for the first time shows that H2O and H2O2 are comparable at catalyzing the rate‐determining step of this reaction, which emphasis the importance of solvent effect in such transformations. It is found that both the less ring‐constrain and a later transition state in an exothermic reaction account for the origin why the reaction favors ring‐contraction pathway rather than ring‐opening one. By a comprehensive analysis for the substituted groups, it has been disclosed that the steric effects of the substituted groups on R2 and R3 contribute to the selectivity with larger steric hindrance favoring the chiral cyclic products. Moreover, the electronic effects on R1 but not R3 affect the selectivity with electron‐donating groups leading to the cyclic products. Based on our calculations, some predictions for higher selectivity have been made.  相似文献   

13.
The thermal conversion of 4‐isoxazolines to 4‐oxazolines involves the transposition of two ring members. The ring‐contraction and ring‐expansion sequence in the reaction 2 → 5 has been previously clarified. The low N−N bond energy should favor an analogous conversion of 3‐pyrazolines 6 to 4‐imidazolines 7 ; the first example of such a transformation is reported here. In the yellow 16 , the 3‐pyrazoline is part of a pyrazolo[5,1‐a]isoquinoline system. Daylight induces a ring contraction, which affords the 2‐isoquinolylaziridine derivative 21 . The latter is converted at 65° to the tricyclic 4‐imidazoline 26 by a sequence of electrocyclic aziridine ring‐opening and 1,5‐electrocyclization of a C=N‐conjugated azomethine ylide 25 .  相似文献   

14.
A novel process for synthesizing nylon‐6 and poly(?‐caprolactone) by microwave irradiation of the respective monomers, ?‐caprolactam and ?‐caprolactone, is described. The ring opening of ?‐caprolactam to produce nylon‐6 was performed in a microwave oven by the forward power being controlled to about 90–135 W in the presence of an ω‐aminocaproic acid catalyst (10 mol %) and for periods of 1–3 h at temperatures varying from 250 to 280 °C. The ring opening of ?‐caprolactone to produce poly(?‐caprolactone) was performed in a microwave oven by the forward power being controlled to about 70–100 W for a period of 2 h in the presence of stannous octoate with and without 1,4‐butanediol over a temperature range of 150–200 °C. The yields, conditions of the reactions, and properties of the products generated relative to the thermal processes are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2264–2275, 2002  相似文献   

15.
An influence of a structure of the amine (benzylamine, N‐methyl‐benzylamine, N‐isopropyl‐benzylamine, N‐methyl‐butylamine, N‐ethyl‐butylamine, sec‐butylamine, and tert‐butylamine) on a rate constant of the ring‐opening reaction of 4‐benzylidene‐2‐methyl‐5‐oxazolone (Ox) was studied. The good correlation between logarithm of the rate constants and Charton's steric substituent constant ν as well as good correlation with a form of the simple branching equation indicate that there is a steric effect because of substitution at C1 carbon atom of nucleophile which decreases the reaction rate. Additionally, an influence of a structure of the benzylidene moiety of Ox on a rate of the oxazolone ring‐opening reaction was studied. The substituents (? OH, ? OCH3, ? N(CH3)2, ? Cl, ? NO2) in para‐position of the phenyl ring of Ox substantially modified the rate of the reaction with benzylamine in acetonitrile. The rate of the Ox ring‐opening reaction decreased with increase of the electron‐donating properties of the substituent. A good correlation between the rate constants of the reaction of 4‐(4′‐substituted‐benzylidene)‐2‐methyl‐5‐oxazolones with benzylamine and the electron density at the reaction center (carbon C5 of the oxazolone ring), calculated using ab initio method, and the Hammett substituent constants, and CR equation were established. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 148–155, 2002; DOI 10.1002/kin.10039  相似文献   

16.
The catalytic enantioselective [3+2] cycloaddition between azomethine ylides and α,β‐unsaturated aldehydes catalyzed by α,α‐diphenylprolinol has been studied in detail. In particular, the reaction has been extended to the use of 2‐alkenylidene aminomalonates generated in situ as azomethine ylide precursors. These reactions lead to the formation of pyrrolidines containing a 5‐alkenyl side chain with potential for chemical manipulation. Moreover, a detailed and concise computational study has been carried out to understand the exact nature of the mechanism of this reaction and especially the consequences derived from the incorporation of the chiral secondary amine catalyst on the reaction pathway.  相似文献   

17.
A continuous‐flow synthesis of aziridines by palladium‐catalyzed C(sp3)?H activation is described. The new flow reaction could be combined with an aziridine‐ring‐opening reaction to give highly functionalized aliphatic amines through a consecutive process. A predictive mechanistic model was developed and used to design the C?H activation flow process and illustrates an approach towards first‐principles design based on novel catalytic reactions.  相似文献   

18.
Herein we report the cycloisomerization of electron‐poor 1,5‐dienes via the β‐azolium ylide to give enantioenriched cyclopentenes. The reaction is mediated by a chiral N‐heterocyclic carbene (NHC) catalyst, exploits readily available substrates, has good generality (17 examples), and displays excellent enantioselectivity (mostly >94:6). Studies demonstrating the viability of a related dynamic kinetic resolution are reported, as are those with alternate tethers and derivatizations.  相似文献   

19.
The reactivity of various α‐diazocarbonyl piperidine scaffolds, characterised by an increased molecular complexity, was tested with various RhII catalysts. The structure of the starting reagent is of relevance to the synthetic results. An unexpected dimerisation took place, starting from the simple piperidine scaffold, to give the hexahydrotetrazine ring system. Products derived from a nitrogen ylide intermediate or aromatic substitution (1,3,4,5‐tetrahydro‐2,5‐methanobenzo[c]azepine and 1,2,3,3a‐tetrahydrocyclopenta[de]isoquinolin‐4(5 H)‐one rings, respectively) were obtained from tetrahydroisoquinoline derivatives. The chemoselectivity of the reaction could be controlled by the choice of starting reagent, RhII catalyst and the reaction conditions. Finally, it was found that the azepino heterocycle could coordinate to the catalyst to give new RhII complexes.  相似文献   

20.
A series of activated urethane‐type derivatives of γ‐benzyl‐L ‐glutamate were synthesized, and their potential as monomers for polypeptide synthesis was investigated. The derivatives of the focus of this work were a series of N‐aryloxycarbonyl‐γ‐benzyl‐L ‐glutamate 1 , of which aryl groups were phenyl, 4‐chlorophenyl, and 4‐nitrophenyl. These urethanes 1 were reactive in polar solvents such as dimethylsulfoxide, N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc), and were efficiently converted into poly(γ‐benzyl‐L ‐glutamate) (poly(BLG)) under mild conditions; at 60 °C without addition of any catalyst. Among the three urethanes, that having 4‐nitrophenoxycarbonyl group 1c was the most reactive to give poly(BLG) efficiently, as was expected from the highly electron deficient nature of the nitrophenoxycarbonyl group. On the other hand, the urethane 1a having phenoxycarbonyl group was also efficiently converted into poly(BLG), in spite of the intrinsically less electrophilicity of the phenoxycarbonyl group. In addition, the successful formation of poly(BLG) by the reaction of 1a favored its diluted concentration (0.1 M) much more than 2.0 M, the optimum initial concentration for 1c . 1H NMR spectroscopic analyses of the reactions in situ revealed that the predominant pathway from 1 to poly(BLG) involved the intramolecular cyclization of 1 into the corresponding N‐carboxyanhydride, with release of phenol and its successive ring‐opening polymerization with release of carbon dioxide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2649–2657, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号