首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ruby‐red crystals of Ag2Bi2S3Cl2 were synthesized from AgCl and Bi2S3 by cooling a melt from 770 K to room temperature. X‐ray diffraction on powders and single‐crystals revealed a triclinic crystal structure with special lattice constants (P &1macr; (No. 2), a = 1085.0(2), b = 717.2(1), c = 1137.6(1) pm, α = 89.80(1)?, β = 74.80(1)?, γ = 87.81(1)?). In the structure [BiIIIS3Cl4] polyhedra form 2[BiS3/2Cl4/4] double‐layers by sharing common faces and edges. The silver(I) cations between the layers are coordinated either octahedrally by sulfide ions or tetrahedrally by sulfide and chloride ions. The deviations from the monoclinic space group P 1 21/c 1 are small and induce twinning along [010]. Further pseudosymmetry is based on the stacking of layer packages with the symmetry of the layer group P (2/c) 21/c 2/b.  相似文献   

2.
The competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solutions by the copolymer of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and itaconic acid (IA), P(AMPS‐co‐IA), was investigated. Homopolymer of AMPS (PAMPS) was also used to remove these ions from their aqueous solution. In the preparation of AMPS–IA copolymer, the molar percentages of AMPS and IA were 80 and 20, respectively. In order to observe the changes in the structures of polymers due to metal adsorption, FTIR spectra by attenuated total reflectancetechnique and scanning electron microscopy (SEM) pictures of the polymers were taken both before and after adsorption experiments. Total metal ion removal capacities of PAMPS and P(AMPS‐co‐IA) were 1.685 and 1.722 mmol Me2+/gpolymer, respectively. Experimental data were evaluated to determine the kinetic characteristics of the adsorption process. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions onto both PAMPS and P(AMPS‐co‐IA) was found to fit pseudo‐second‐order type kinetics. In addition, the removal orders in the competitive adsorption of these metal ions onto PAMPS and P(AMPS‐co‐IA) were found to be Cd2+ > Pb2+ > Cu2+ and Pb2+ > Cd2+ > Cu2+, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The combination of Cu(NO3)2, potassium hydrogen saccharate (KC6H9O8) and 1,10‐phenanthroline (phen) yields a pair of chiral cluster compounds, each with composition Cu21(C6H5O8)6(phen)12(NO3)12?solvate. One of the compounds forms as orthorhombic crystals, while the other forms cubic crystals. Each of the clusters has D3 or approximate D3 symmetry, but the arrangement of the saccharate ion in the clusters is quite different in the two cases. The clusters in the cubic form interact with neighbouring clusters through face‐to‐face π interactions involving the phen ligands, an association that leads to the generation of very large solvent‐filled spaces in the crystal structure. In contrast the clusters in the orthorhombic form are much more densely packed. At the centre of each cluster that crystallises in the orthorhombic form is a nitrate anion that binds to six CuII centres. ESI mass spectral studies indicate that the Cu21 clusters exist in solution. Solid‐state magnetic studies of the cubic form of Cu21 show that antiferromagnetic coupling occurs to leave a non‐zero‐spin ground state, and comparisons are made to the magnetic data for other large CuII clusters.  相似文献   

4.
By alternating‐current electrochemical technique crystals of copper(I) π‐complex with 1‐allylpyridinium chloride of [C5H5N(C3H5)][Cu2Cl3] ( 1 ) composition have been obtained and structurally investigated. Compound 1 crystallizes in monoclinic system, space group C2/c a = 24.035(1) Å, b = 11.4870(9) Å, c = 7.8170(5) Å, β = 95.010(5)°, V = 2150.0(2) Å3 (at 100 K), Z = 8, R = 0.028, for 4836 independent reflections. In the structure 1 trigonal‐pyramidal environment of π‐coordinated copper(I) atom is formed by a lengthened to 1.376(2) Å C=C bond of allyl group and by three chlorine atoms. Other two copper atoms are tetrahedrally surrounded by chlorine atoms only. The coordination polyhedra are combined into an original infinite (Cu4Cl62—)n fragment. Structural comparison of 1 and the recently studied copper(I) chloride π‐complexes with 3‐amino‐, 2‐amino‐, 4‐amino‐1‐allylpyridinium chlorides of respective [LCu2Cl3] ( 2 ), [L2Cu2Cl4] ( 3 ), and [LCuCl2] ( 4 ) compositions allowed us to reveal the trend of the inorganic fragment complication which depends on pKa (base) value of the corresponding initial heterocycle.  相似文献   

5.
In the isostructural title complexes, [M(C9H6N3O2)2(H2O)2] [M = CoII, (I), CdII, (II), and CuII, (III); the metal centres reside on a twofold axis in the space group C2/c for (I) and (II)], the metal centres are surrounded by four O atoms from two O,O′‐bidentate carboxyl­ate groups and by two trans‐coordinated aqua ligands, forming a distorted octa­hedral environment. The mol­ecules possess four hydrogen‐bond donor (two aqua ligands) and four hydrogen‐bond acceptor sites (two triazole groups), and aggregate by self‐association, forming two‐dimensional hydrogen‐bonded frameworks [via O—H⋯N inter­actions; O⋯N = 2.749 (3)–2.872 (3) Å]. The layers are parallel and are tightly packed with short inter­layer distances of 4.93, 4.95 and 5.01 Å for (I), (II) and (III), respectively.  相似文献   

6.
A new binary phase, Cu10In7, was found during the investigation of the η‐phase field in the Cu‐In system. Single crystals of Cu10In7 were grown from a melt under an inert atmosphere. The compound crystallizes in the monoclinic space group C2/m with cell parameters a = 13.8453(2) Å, b = 11.8462(1) Å, c = 6.7388(1) Å and β = 91.063(1). The structure is based on a unit of face‐sharing octahedra consisting of five Cu4In2 octahedra terminated by Cu5In octahedra at both ends. The crystal structure is closely related to the Cu11In9 structure type.  相似文献   

7.
Colorless single crystals of Cd28‐MTB] · 3H2O · DMF ( 1 ) were prepared in DMF/H2O solution [ 1 : space group C2/c (no. 15) with a = 1821.30(6), b = 2175.08(6), c = 1269.87(4) pm, β = 129.684(1)°]. The connection between the methane‐p‐benzoate tetraanions (MTB4–) and the Cd2+ cations leads to a three‐dimensional framework with channels extending along [1 10] and [110] with openings of 670 pm × 360 pm. The channel‐like voids accommodate water molecules and N,N‐dimethylformamide (DMF) molecules not bound to Cd2+. Colorless single crystals of [Cd4(2,2′‐bipy)47‐MTB)2] · 7DMF ( 2 ) were prepared in DMF in the presence of 2,2′‐bipyridine [ 2 : space group P1 (no. 2) with a = 1224.84(4), b = 1418.85(5), c = 2033.49(4) pm, α = 85.831(2)°, β = 88.351(2)°, γ = 68.261(1)°]. The coordination of MTB4– to Cd2+ results in infinite layers parallel to (001). The layers, not connected by any hydrogen bonds, contain small openings of about 320 pm × 340 pm.  相似文献   

8.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

9.
Rigid N‐(substituted)‐2‐aza‐[3]‐ferrocenophanes L1 and L2 were easily synthesized from 1,1 ‐dicarboxyaldehydeferrocene and the corresponding amines. Ligands L1 and L2 were characterized by 1H NMR, 13C NMR and single‐crystal X‐ray crystallography. The coordination abilities of L1 and L2 with metal ions such as Cu2+, Mg2+, Ni2+, Zn2+, Pb2+ and Cd2+ were evaluated by cyclic voltammetry. The electrochemical shift (ΔE1/2) of 125 mV was observed in the presence of Cu2+ ion, while no significant shift of the Fc/Fc + couple was observed when Mg2+, Ni2+, Zn2+, Pb2+, Cd2+ metal ions were added to the solution of L1 in the mixture of MeOH and H2O. Moreover, the extent of the anodic shift of redox potentials was approximately equal to that induced by Cu2+ alone when a mixture of Cu2+, Mg2+, Ni2+, Zn2+, Pb2+ and Cd2+ was added to a solution of L1. Ligand L1 was proved to selectively sense Cu2+ in the presence of large, excessive first‐row transition and late‐transition metal cations. The coordination model was proposed from the results of controlled experiments and quantum calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Kryptoracemates are racemic compounds (pairs of enantiomers) that crystallize in Sohnke space groups (space groups that contain neither inversion centres nor mirror or glide planes nor rotoinversion axes). Thus, the two symmetry‐independent molecules cannot be transformed into one another by any symmetry element present in the crystal structure. Usually, the conformation of the two enantiomers is rather similar if not identical. Sometimes, the two enantiomers are related by a pseudosymmetry element, which is often a pseudocentre of inversion, because inversion symmetry is thought to be favourable for crystal packing. We obtained crystals of two kryptoracemates of two very similar compounds differing in just one residue, namely racN‐[(1S ,2R ,3S )‐2‐methyl‐3‐(5‐methylfuran‐2‐yl)‐1‐phenyl‐3‐(pivalamido)propyl]benzamide, C27H32N2O3, (I), and racN‐[(1S ,2S ,3R )‐2‐methyl‐3‐(5‐methylfuran‐2‐yl)‐1‐phenyl‐3‐(propionamido)propyl]benzamide dichloromethane hemisolvate, C25H28N2O3·0.5CH2Cl2, (II). The crystals of both compounds contain both enantiomers of these chiral molecules. However, since the space groups [P 212121 for (I) and P 1 for (II)] contain neither inversion centres nor mirror or glide planes nor rotoinversion axes, there are both enantiomers in the asymmetric unit, which is a rather uncommon phenomenon. In addition, it is remarkable that (II) contains two pairs of enantiomers in the asymmetric unit. In the crystal, molecules are connected by intermolecular N—H…O hydrogen bonds to form chains or layered structures.  相似文献   

11.
The title complex, {[CdHg(SCN)4(C4H9NO)2]2}n, contains two crystallographically independent CdII centres and two HgII centres. Each CdII atom is bound to four N atoms belonging to SCN groups and to two O atoms from N,N‐di­methyl­acet­amide (DMA) ligands in an octahedral geometry. Each HgII centre is tetrahedrally coordinated by four SCN S atoms.  相似文献   

12.
Syntheses, Crystal Structures, and Triple Twinning of the Cluster Trimers Bi2[PtBi6Br12]3 and Bi2[PtBi6I12]3 Melting reactions of Bi with Pt and BiX3 (X = Br, I) yield shiny black, air insensitive crystals of the subhalides Bi2[PtBi6X12]. Bi2[PtBi6Br12]3 crystallizes in the monoclinic space group C2/m with lattice parameters a = 1617.6(2) pm, b = 1488.5(1) pm, c = 1752.4(2) pm, and β = 110.85(4)°. Bi2[PtBi6I12]3 adopts the triclinic space group with pseudo‐monoclinic lattice parameters a = 1711.2(2) pm, b = 1585.1(1) pm, c = 1865.7(2) pm, and α = 90°, β = 111.15(4)°, γ = 90°. The two homoeotypic compounds consist of cuboctahedral [Pt?IIBiII6X?I12]2? clusters that are concatenated into linear trimers by BiIII atoms. The ordered distribution of BiIII atoms destroys the inherent threefold rotation axes in the packing of cluster anions. As a consequence of the pseudosymmetry the crystals are triple twinned along [201]. Due to different orientations of the cluster trimers there are two BiII···X inter‐cluster bridges per BiII atom in Bi2[PtBi6Br12]3 but only one bridge in Bi2[PtBi6I12]3. The structure of the iodine compound can be deduced from the NaCl structure type, leaving 37 of 96 atomic positions unoccupied. The arrangement of the cuboctahedral clusters follows the motif of a body‐centered cubic packing.  相似文献   

13.
The crystal structures of three products of the reaction of 2‐phenylphenol and BCl3 have been determined. The structures show intriguing packing patterns and an interesting case of pseudosymmetry. In addition, one of the two polymorphs has a primitive monoclinic crystal system, but it is twinned and emulates an orthorhombic C‐centred structure. Tris(biphenyl‐2‐yl) borate, C36H27BO3, ( III ), crystallizes with only one molecule in the asymmetric unit. The dihedral angles between the planes of the aromatic rings in the biphenyl moieties are 50.47 (13), 44.95 (13) and 42.60 (13)°. The boron centre is in a trigonal planar coordination with two of the biphenyl residues on one side of the BO3 plane and the remaining biphenyl residue on the other side. One polymorph of 10‐oxa‐9‐boraphenanthren‐9‐ol, C12H9BO2, ( V a ), crystallizes with two almost identical molecules (r.m.s. deviation of all non‐H atoms = 0.039 Å) in the asymmetric unit. All non‐H atoms lie in a common plane (r.m.s. deviation = 0.015 Å for both molecules in the asymmetric unit). The two molecules in the asymmetric unit are connected into dimers via O—H...O hydrogen bonds. A second polymorph of 10‐oxa‐9‐boraphenanthren‐9‐ol, ( V b ), crystallizes as a pseudo‐merohedral twin with two almost identical molecules (r.m.s. deviation of all non‐H atoms = 0.035 Å) in the asymmetric unit. All non‐H atoms lie in a common plane (r.m.s. deviation = 0.012 Å for molecule 1 and 0.014 Å for molecule A). Each of the two molecules in the asymmetric unit is connected into a centrosymmetric dimer via O—H...O hydrogen bonds. The main difference between the two polymorphic structures is that in ( V a ) the two molecules in the asymmetric unit are hydrogen bonded to each other, whereas in ( V b ), each molecule in the asymmetric unit forms a hydrogen‐bonded dimer with its centrosymmetric equivalent. 9‐[(Biphenyl‐2‐yl)oxy]‐10‐oxa‐9‐boraphenanthrene, C24H17BO2, ( VI ), crystallizes with four molecules in the asymmetric unit. The main differences between them are the dihedral angles between the ring planes. Apart from the biphenyl moiety, all non‐H atoms lie in a common plane (r.m.s. deviations = 0.026, 0.0231, 0.019 and 0.033 Å for molecules 1, A, B and C, respectively). This structure shows pseudosymmetry; molecules 1 and A, as well as molecules B and C, are related by a pseudo‐translation of about in the direction of the b axis. Molecules 1 and B, as well as molecules A and C, are related by a pseudo‐inversion centre at ,,. Neither between molecules 1 and C nor between molecules A and B can pseudosymmetry be found.  相似文献   

14.
Colourless crystals of the title compound, bis(2‐bromo­phenyl) di­sulfide, C12H8Br2S2, are obtained from the reaction of 2‐bromo­phenyl­mercaptan with metallic sodium and either zinc chloride or cadmium chloride in methanol. In the presence of ZnII ions, the crystals are orthorhombic (space group Pbca, with Z′ = 1); with CdII ions present, the product is triclinic (space group , with Z′ = 4). Both polymorphs exhibit significant intramolecular C—H⋯S hydrogen bonds. In the ortho­rhombic form, mol­ecules are linked by intermolecular C—H⋯Br hydrogen bonds, while in the triclinic form, mol­ecules exhibit Br⋯Br contacts.  相似文献   

15.
Three new coordination polymers, namely, [CuL0.5] ( 1 ), [Co(H2L)(H2O)2][H2O] ( 2 ), and [(CdCl)0.5Cd0.25(H2L)0.5] ( 3 ) were synthesized under hydrothermal conditions from the corresponding CuII, CoII, and CdII salts with a multidentate ligand of 2,2′,2′′,2′′′‐[2,3,5,6‐tetramethyl‐1,4‐phenylenebis(methylenenitrilo)]tetraacetic acid (H4L). The complexes were characterized by single‐crystal X‐ray diffraction, IR, thermogravimetric, and elemental analyses. Complex 1 crystallizes in the orthorhombic space group Pbca and has a three‐dimensional architecture with infinite two‐dimensional networks linked together by weak Cu–O interactions. Complex 2 crystallizes in the monoclinic space group P2(1) and displays a 2D network. Complex 3 crystallizes in the tetragonal space group P4(2)/ncm and exhibits an infinite 3D architecture that has unusual [Cd2(CO2)4Cl2] dinuclear paddle‐wheel units and [Cd(CO2)4] dodecahedron units. The results showed that the coordination arrangement of central metal atoms and the conformation and coordination mode of organic ligands play an important role in determining the structure of the complexes. The luminescence property of complex 3 was studied in the solid state at room temperature.  相似文献   

16.
The reaction of CuCl with WOCl3 at 400 °C leads to a mixture of Cu1?x[W2O2Cl6] ( 1 ) and Cu1?x[W4O4Cl10] ( 2 ) in form of black lustrous needles. Both compounds crystallize in space group C2/m with a = 12.7832(5) Å, b = 3.7656(2) Å, c = 10.7362(3) Å, β = 119.169(2)° for 1 and a = 12.8367(19) Å, b = 3.7715(7) Å, c = 15.955(3) Å, β = 102.736(5)° for 2 . The structures are made up of WO2Cl4 octahedra. In the case of 1 two octahedra are edge‐sharing via chlorine atoms to form pairs which are linked via the trans‐positioned oxygen atoms to form infinite double strands . In the structure of 2 two of these double strands are condensed via terminal chlorine atoms to form quadruple strands . Like for all members of the Mx[W2O2X6] structure family (X = Cl, Br) nonstochiometry with respect to the cations M was observed. The copper content of 1 and 2 was derived from the site occupation factors of the respective structure refinements. For several crystals examined the copper content varied between x = 0.27 and 0.17 for 1 and x = 0.04 for 2 . In both structures the oxochlorotungstate strands are negatively charged and connected to layers by the monovalent copper ions, which are tetrahedrally coordinated by the non‐bridging chlorine atoms of the strands. The structure models imply disorder of the Cu+ ions over closely neighboured sites.  相似文献   

17.
The Metal‐rich Layer Structure of Ta6STe3 Ta6S1+xTe3–x was prepared from an appropriate mixture of 2 H–Ta1.3S2, TaTe2, and Ta in a fused tantalum tube at 1273 K within 3 d. The results of a X‐ray single crystal structure analysis for a phase near the Te‐rich limit of the homogeneity range are reported. Ta6S1.00Te3.00(1) crystallizes in the triclinic space group P1, a = 993.14(8) pm, b = 1032.18(8) pm, c = 1378.78(11) pm, α = 79.32(1)°, β = 81.36(1)°, γ = 85.74(1)°, Z = 6, Pearson symbol aP60, 6048 Io > 2σ (Io), 286 variables, wR2 = 0.067. The metal‐rich layer structure of Ta6STe3 comprises distorted icosahedral Ta13 clusters and related deltahedral cluster fragments complemented by chalcogen atoms. The centred clusters consist of 11, 12, 13, 14, or 16 atoms. They interpenetrate into lamellae in which the tantalum and chalcogen atoms are spatially segregated according to [Q–Ta3–Q]. The signature of the structure is a lenticular heptagonal antiprismatic Ta30 cluster which seems to be excised from the pentagonal antiprismatic columnar structure of Ta6S. The Ta30 clusters and distorted icosahedral Ta13 clusters are connected and fused into puckered layers. The rest of the tantalum valences are used for heteronuclear bonding. The chalcogen atoms having three to six next tantalum atoms coat the corrugated, tetrahedrally close‐packed layers. Ta6STe3 is a moderate metallic conductor (ρ293 K = 3 × 10–4 Ωcm) exhibiting typical temperature independent paramagnetic properties.  相似文献   

18.
A New Aluminum/Nickel/Oxo‐Cluster: [Ni(acac)OAl(OtBu)2]4 When bis(tert‐butoxy)alane (tBu‐O)2AlH is allowed to react with nickeldiacetylacetonate at elevated temperature a new nickel/aluminum/oxo cluster [Ni(acac)OAl(OtBu)2]4 is formed together with aluminum acetylacetonate Al(acac)3 and some other products. The metal/oxo cluster is isolated by crystallization and structurally fully characterized by X‐ray diffraction analysis. The molecule [Ni(acac)OAl(OtBu)2]4 contains an eight membered Al4O4 cycle, to which eight mutually edge sharing NiO2Al cycles are fused. The overall point symmetry of the metal/oxo cluster is almost S4. While the aluminum atoms are tetrahedrally surrounded by oxygen ligands (mean distances Al‐O in‐between 1, 730(6) and 1, 789(6) Å)), the nickel atoms are in a square pyramidal coordination sphere of oxygen atoms (Ni‐Oaxial = 1.938(6) Å, Ni‐Obasal = 2.056(9) Å; all polyhedra are distorted). The nickel atoms have a d8 high spin electron configuration (μeff = 3.32 B.M.).  相似文献   

19.
The title phases are orthorhombic: ThIn,oP24, space groupPbcm,a = 10.806(3)A?,b = 9.954(4)A?,c = 6.520(4)A?,Z = 12; Th6Cd7,oP26, space groupPbam,a = 11.703(3),A?,b = 9.929(7)A?,c = 6.041(2)A?,Z = 2. Direct methods were used for both structure solutions on data collected with an automated single crystal X-ray diffractometer. Anisotropic refinements gaveR = 0.065for ThIn andR = 0.086for Th6Cd7 using 799 and 1015 reflections, respectively. The structure of ThIn is closely related to the hexagonal Ti5Ga4 type, from which it can be geometrically derived. Th6Cd7 can be regarded as a tetrahedrally close packed structure where the Th atoms present the typical CN 14, CN 15, and CN 16 Frank-Kasper polyhedra and the Cd atoms are icosahedrally coordinated.  相似文献   

20.
The crystal structures among M1–M2–(H)‐arsenites (M1 = Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cd2+, Pb2+; M2 = Mg2+, Mn2+,3+, Fe2+,3+, Co2+, Ni2+, Cu2+, Zn2+) are less investigated. Up to now, only the structure of Pb3Mn(AsO3)2(AsO2OH) was described. The crystal structure of hydrothermally synthesized Na4Cd7(AsO3)6 was solved from the single‐crystal X‐ray diffraction data. Its trigonal crystal structure [space group R$\bar{3}$ , a = 9.5229(13), c = 19.258(4) Å, γ = 120°, V = 1512.5(5) Å3, Z = 3] represents a new structure type. The As atoms are arranged in monomeric (AsO3)3– units. The surroundings of the two crystallographically unique sodium atoms show trigonal antiprismatic coordination, and two mixed Cd/Na sites are remarkably unequal showing tetrahedral and octahedral coordinations. Despite the 3D connection of the AsO3 pyramids, (Cd,Na)Ox polyhedra and NaO6 antiprisms, a layer‐like arrangement of the Na atoms positioned in the hexagonal channels formed by CdO4 deformed tetrahedra and AsO3 pyramids in z = 0, 1/3, 2/3 is to be mentioned. These pseudo layers are interconnected to the 3D network by (Cd,Na)O6 octahedra. Raman spectra confirmed the presence of isolated AsO3 pyramids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号