首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear optical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of small and medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capable of isolating molecule‐membrane interactions at specific membrane surfaces in multi‐membrane cells, such as bacteria. In this review, we discuss select examples from our lab employing time‐resolved SHS to study real‐time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interface in a Gram‐negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the century old Gram stain protocol for classifying bacteria. Additionally, we examine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability. Finally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub‐cellular regions of individual living cells.  相似文献   

2.
Electrochemistry and biomembranes are interface science in that both are concerned with the phenomena at, as well as across, the interfaces. Membrane electrochemistry may be defined as the application of electrochemistry to biomembrane studies. Additionally, transport processes within the membrane are involved in biomembranes. Since biomembranes are diverse and are usually not amenable to probing by electrochemicophysical techniques, model membrane systems have been developed for their investigation.

The introduction of experimental bilayer lipid membranes (BLM) technique and its modifications have been instrumental in the development and testing of membrane transport concepts (carriers vs channels) and electronic processes in membranes. Instead merely viewing a biomembrane as a physical barrier containing carriers or channels to carry out ionic processes, an ultrathin lipid or biological membrane can also be considered as a complete ‘electrochemical cell’ with one membrane/solution interface reducing (as a cathode) and the other membrane/solution interface oxidizing (as an anode). It is now possible to understand energy transduction (charge generation, separation, and redox reactions) in terms of ultrathin lipid membranes separating two aqueous solutions.

In this paper, we shall discuss the basic principles of electrochemistry as they are applied to membrane studies. Emphasis will be on experimental bilayer lipid membranes (BLM) which have been extensively investigated as models of biomembranes.  相似文献   


3.
Lipids are essential components of all bacterial membranes. The most common membrane‐associated lipids in Gram‐negative bacteria are phospholipids and lipid A, the hydrophobic anchor of lipopolysaccharide. Diversity in these lipids arises through structural modifications that include changes in the length and location of fatty acids, and the addition of phosphate and carbohydrate moieties. Analysis of individual structural modifications normally requires large quantities of starting material and multiple methods for the isolation, hydrolysis, and analysis. In this study, we developed a novel one‐step protocol for the combined isolation of phospholipids and lipid A from Francisella subspecies followed by analysis using matrix‐assisted laser desorption ionization time‐of‐flight tandem mass spectrometry. The total time for lipid isolation and analysis was approximately 15 min and with a lower limit of detection of approximately 100 ng of purified lipid. This protocol identified the major lipid structures using both wild‐type Ft subspecies strains and lipid A biosynthesis mutants. We also determined the relative levels of individual lipid A and phospholipids after growth under conditions that mimic the mammalian infection process. This analysis showed that the bacterial membranes remodeled rapidly to adapt to changes in environmental growth conditions and may be important for Francisella pathogenesis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The asymmetric arrangement of phospholipids between the two leaflets of the plasma membrane of eukaryotic cells is an integral part of cellular function. ATP-dependent translocases capable of selective lipid transport across the membrane are believed to play a role in this lipid asymmetry, but our understanding of this process is incomplete. Here we show the first direct and quantitative experiments demonstrating the induction of phosphatidylserine asymmetry in a membrane by electrostatic association of poly-l-lysine in an attempt to elucidate the complex factors which govern the establishment and maintenance of lipid compositional asymmetry in the plasma membrane on a fundamental level. The attractive electrostatic interactions between the charged surface-associated polylysine and phosphatidylserine are sufficient to both induce and maintain an asymmetric arrangement of phosphatidylserine in a planar supported membrane, as measured by sum-frequency vibrational spectroscopy. These studies provide a glimpse of the physical and chemical underpinnings of lipid asymmetry in the eukaryotic plasma membrane.  相似文献   

5.
Abstract— Photobiological processes such as photosynthesis, photomorphogenesis, photomovement, and photoreception are all associated with the membranous portions of cells. The unique properties of membrane surfaces are apparently required to achieve biologically relevant energy transduction and photocontrol phenomena and consequently the use of model membrane systems is suggested as an advantageous approach to elucidation of the important physical and chemical processes involved. Black lipid membrane (BLM) and liposome techniques are critically reviewed as preferred techniques for constructing and manipulating lipid bilayers. The lipid bilayer is considered to be the basic foundation for biological membrane models, and specific physical phenomena observed with the bilayers and their biological ramifications are analyzed. Light-stimulated polarization of the membrane and electron transfer across the bilayer are viewed as appropriate analogs of vision and photosynthesis, respectively. Bilayer-adsorbed dye experiments are the simplest systems explored that exhibit polarization and charge transfer across the membrane. Chloroplast extract BLM experiments are cited as an example of the light-stimulated transfer of electrons across the membrane under the influence of a preexisting redox gradient. Biliprotein (phycocyanin or phycoerythrin) on one side of the chloroplast extract membrane permits the direction of electron flow across the membrane so that a redox gradient is created in a manner truly analogous to photosynthesis. The potential for solar energy conversion from such membranes is explicitly considered utilizing a schematic photoelectrochemical cell. Model membranes containing bacterial rhodopsin and phytochrome represent examples of ionic gradients that result in biological energy transduction. Studies of membranes that exhibit transient photoeffects are considered potentially relevant for the elucidation of phototaxis. The analysis of many properties of photosensitive membranes is greatly aided by the use of appropriate theoretical models. It is apparent that there is a great potential for the application of photosensitive model membranes in many research areas involving complex photobiological phenomena and novel methods for solar energy conversion.  相似文献   

6.
Biosensors that make use of transport processes across lipid membranes are very rare even though a stimulus, the binding of a single analyte molecule, can enhance the sensor response manifold if the analyte leads to the transport of more than one ion or molecule across the membrane. Prerequisite for a proper function of such membrane based biosensors is the formation of lipid bilayers attached to a support that allow for the insertion of membrane peptides and proteins in a functional manner. In this review, the current state of the art technologies to obtain lipid membranes on various supports are described. Solid supported membranes on transparent and electrically conducting surfaces, lipid bilayers on micromachined apertures and on porous materials are discussed. The focus lies on the applicability of such membranes for the investigation of transport phenomena across lipid bilayers facilitated by membrane embedded peptides, channel proteins and transporters. Carriers and channel forming peptides, which are easy to handle and rather robust, are used frequently to build up membrane based biosensors. However, channel forming proteins and transporters are more difficult to insert functionally and thus, there are yet only few examples that demonstrate the applicability of such systems as biosensor devices.   相似文献   

7.
We have employed atomic-scale molecular dynamics simulations to address ion transport through transient water pores in phospholipid membranes. The formation of a water pore is induced by a transmembrane ionic charge imbalance, which gives rise to a significant potential difference across the membrane. The subsequent transport of ions through the pore discharges the transmembrane potential and makes the water pore metastable, leading eventually to its sealing. The findings highlight the importance of ionic charge fluctuations in spontaneous pore formation and their role in ion leakage through protein-free lipid membranes.  相似文献   

8.
Transmission of chemical information between cells and across lipid bilayer membranes is of profound significance in many biological processes. The design of synthetic signalling systems is a critical step towards preparing artificial cells with collective behaviour. Here, we report the first example of a synthetic inter-vesicle signalling system, in which diffusible chemical signals trigger transmembrane ion transport in a manner reminiscent of signalling pathways in biology. The system is derived from novel ortho-nitrobenzyl and BODIPY photo-caged ZnII transporters, in which cation transport is triggered by photo-decaging with UV or red light, respectively. This decaging reaction can be used to trigger the release of the cationophores from a small population of sender vesicles. This in turn triggers the transport of ions across the membrane of a larger population of receiver vesicles, but not across the sender vesicle membrane, leading to overall inter-vesicle signal transduction and amplification.  相似文献   

9.
Antimicrobial peptides (AMPs) are cationic amphiphiles that comprise a key component of innate immunity. Synthetic analogues of AMPs, such as the family of phenylene ethynylene antimicrobial oligomers (AMOs), recently demonstrated broad-spectrum antimicrobial activity, but the underlying molecular mechanism is unknown. Homologues in this family can be inactive, specifically active against bacteria, or nonspecifically active against bacteria and eukaryotic cells. Using synchrotron small-angle X-ray scattering (SAXS), we show that observed antibacterial activity correlates with an AMO-induced topological transition of small unilamellar vesicles into an inverted hexagonal phase, in which hexagonal arrays of 3.4-nm water channels defined by lipid tubes are formed. Polarized and fluorescence microscopy show that AMO-treated giant unilamellar vesicles remain intact, instead of reconstructing into a bulk 3D phase, but are selectively permeable to encapsulated macromolecules that are smaller than 3.4 nm. Moreover, AMOs with different activity profiles require different minimum threshold concentrations of phosphoethanolamine (PE) lipids to reconstruct the membrane. Using ternary membrane vesicles composed of DOPG:DOPE:DOPC with a charge density fixed at typical bacterial values, we find that the inactive AMO cannot generate the inverted hexagonal phase even when DOPE completely replaces DOPC. The specifically active AMO requires a threshold ratio of DOPE:DOPC = 4:1, and the nonspecifically active AMO requires a drastically lower threshold ratio of DOPE:DOPC = 1.5:1. Since most gram-negative bacterial membranes have more PE lipids than do eukaryotic membranes, our results imply that there is a relationship between negative-curvature lipids such as PE and antimicrobial hydrophobicity that contributes to selective antimicrobial activity.  相似文献   

10.
The issue of ionizable protein side chains interacting with lipid membranes has been the focus of much attention since the proposal of the paddle model of voltage-gated ion channels, which suggested multiple arginine (Arg) side chains may move through the hydrocarbon core of a lipid membrane. Recent cell biology experiments have also been interpreted to suggest that these side chains would face only small free energy penalties to cross membranes, challenging a long-standing view in membrane biophysics. Here, we employ side chain analog and transmembrane helix models to determine the free energy of an Arg side chain, as a function of protonation state, across a membrane. We observe high free energy barriers for both the charged and neutral states that would prohibit lipid-exposed movement. The mechanisms for charged and neutral Arg transport are, however, very different, with the neutral state experiencing simple dehydration, whereas the charged state experiences a complex mechanism involving connections to the bilayer interfaces that deform the local membrane structure. We employ special methods to ensure sampling of these interfacial connections and decompose the free energy to shed light on the mechanisms. These deformations are found to preferentially stabilize the protonated form, such that the Arg side chain remains almost exclusively charged inside the membrane, with a pKa shift of 相似文献   

11.
Passive transport across cell membranes is the major route for the permeation of xenobiotics through tight endothelia such as the blood–brain barrier. The rate of passive permeation through lipid bilayers for a given drug is therefore a critical step in the prediction of its pharmacodynamics. We describe a detailed study on the kinetics and thermodynamics for the interaction of chlorpromazine (CPZ), an antipsychotic drug used in the treatment of schizophrenia, with neutral and negatively charged lipid bilayers. Isothermal titration calorimetry was used to study the partition and translocation of CPZ in lipid membranes composed of pure POPC, POPC:POPS (9:1), and POPC:Chol:POPS (6:3:1). The membrane charge due to the presence of POPS as well as the additional charge resulting from the introduction of CPZ in the membrane were taken into account, allowing the calculation of the intrinsic partition coefficients (K(P)) and the enthalpy change (ΔH) associated with the process. The enthalpy change upon partition to all lipid bilayers studied is negative, but a significant entropy contribution was also observed for partition to the neutral membrane. Because of the positive charge of CPZ, the presence of negatively charged lipids in the bilayer increases both the observed amount of CPZ that partitions to the membrane (KP(obs)) and the magnitude of ΔH. However, when the electrostatic effects are discounted, the intrinsic partition coefficient was smaller, indicating that the hydrophobic contribution was less significant for the negatively charged membrane. The presence of cholesterol strongly decreases the affinity of CPZ for the bilayer in terms of both the amount of CPZ that associates with the membrane and the interaction enthalpy. A quantitative characterization of the rate of CPZ translocation through membranes composed of pure POPC and POPC:POPS (9:1) was also performed using an innovative methodology developed in this work based on the kinetics of the heat evolved due to the interaction of CPZ with the membranes.  相似文献   

12.
The active transport of ions across biological membranes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper‐transporting P1B‐type ATPase from Legionella pneumophila as a model structure, we have established the site‐specific labeling of internal cysteines with a polarity‐sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid‐embedded state in nanodiscs. Time‐dependent fluorescence shifts revealed the site‐specific hydration and dipole mobility around the conserved ion‐binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.  相似文献   

13.
G‐protein‐coupled receptors (GPCRs) are the largest family of membrane‐bound receptors and constitute about 50 % of all known drug targets. They offer great potential for membrane protein nanotechnologies. We report here a charge‐interaction‐directed reconstitution mechanism that induces spontaneous insertion of bovine rhodopsin, the eukaryotic GPCR, into both lipid‐ and polymer‐based artificial membranes. We reveal a new allosteric mode of rhodopsin activation incurred by the non‐biological membranes: the cationic membrane drives a transition from the inactive MI to the activated MII state in the absence of high [H+] or negative spontaneous curvature. We attribute this activation to the attractive charge interaction between the membrane surface and the deprotonated Glu134 residue of the rhodopsin‐conserved ERY sequence motif that helps break the cytoplasmic “ionic lock”. This study unveils a novel design concept of non‐biological membranes to reconstitute and harness GPCR functions in synthetic systems.  相似文献   

14.
Ion pairing between the major phospholipids of the Staphylococcus aureus plasma membrane (phosphatidylglycerol – PG and lysyl-phosphatidylglycerol – LPG) confers resistance to antimicrobial peptides and other antibiotics. We developed 3adLPG, a stable synthetic analogue which can substitute for the highy-labile native LPG, in biophysical experiments examining the membrane-protecting role of lipid ion pairing, in S. aureus and other important bacteria. Here we examine the surface charge and lipid packing characteristics of synthetic biomimetic mixtures of DPPG and DP3adLPG in Langmuir monolayers, using a combination of complementary surface-probing techniques such as infrared reflection-absorption spectroscopy and grazing-incidence x-ray diffraction. The resultant phase diagram for the ion paired lipids sheds light on the mixing behavior of lipids in monolayer models of resistant phenotype bacterial membranes, and provides a platform for future biophysical studies.  相似文献   

15.
16.
Ion transport across membranes with surface charge due to ion adsorption, including the diffuse double layer effects, is analysed using the network simulation method. The membrane system under study is a multilayer one constituted by a membrane and two diffusion boundary layers on both sides of the membrane. The ion transport processes are described by the Nernst–Planck and Poisson equations not only in the membrane–solution interfaces, but also in the membrane bulk and in the two diffusion boundary layers. The membrane has a negative surface charge due to an anion adsorption process. The structure of the equilibrium diffuse double layers and the steady-state current–voltage characteristic have been analysed for the case of an adsorption process described by a Langmuir-type adsorption isotherm. The evolution of the electric potential difference across the membrane system in the equilibrium state of the system as a function of the bathing concentrations, have been also analysed.  相似文献   

17.
Electrochemical characterization of two different samples of an activated membrane, which consists of a polymeric support containing different amounts of Di-(2-ethylhexyl) phosphoric acid as a carrier, was made by measuring the electrical resistance, salt diffusion and membrane potential for the activated membranes and the polymeric support in contact with NaNO3 solutions. Transport parameters such as the ion transport numbers and concentration of fixed charge in the membrane, salt and ionic permeabilities at different NaNO3 concentrations were obtained. A comparison of the different electrochemical parameters obtained with both activated membranes and the polymeric support shows how the carrier affects the transport of NaNO3 solutions across the activated membranes. On the other hand, chemical composition of the membrane surfaces as a function of the amount of carrier was determined by X-ray photoelectron spectroscopy technique, which also allows an envisagement of the chemical bonding between the carrier and the membrane top layer (polyamide).  相似文献   

18.
Ionophore can prominently improve the ion permeability of cell membrane and disrupt cellular ion homeostasis.Most studies regarding ionophore facilitating ion transmembrane transport focus on artificial liquid-liquid interfaces,which have large difference from the actual environment of cell membrane.Here,we construct a supported lipid bilayeron a gold nanoparticles film modified ZnSe prism as an appropriate model of cell membrane to investigate the dynamic of the ion transport facilitated by ionophore using surface enhanced infrared absorption spectroscopy(SEIRAS).We find that the ion transmembrane transport consists of two steps:The ion transmembrane transport starts with the association/disassociation between ion and ionophore at the edge of lipid bilayer;The second step is the transfer of ion-ionophore complex across lipid bilayer.Our results show that the complex transfer across the lipid bilayer is the rate determining step.  相似文献   

19.
Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from − 1 for the most abundant anionic lipids such as phosphatidylserine, to near − 7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence on the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control.  相似文献   

20.
The effect of di‐N‐methylation of bacterial membrane disruptors derived from aminoglycosides (AGs) on antimicrobial activity is reported. Di‐N‐methylation of cationic amphiphiles derived from several diversely structured AGs resulted in a significant increase in hydrophobicity compared to the parent compounds that improved their interactions with membrane lipids. The modification led to an enhancement in antibacterial activity and a broader antimicrobial spectrum. While the parent compounds were either modestly active or inactive against Gram‐negative pathogens, the corresponding di‐N‐methylated compounds were potent against the tested Gram‐negative as well as Gram‐positive bacterial strains. The reported modification offers a robust strategy for the development of broad‐spectrum membrane‐disrupting antibiotics for topical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号