首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser flash photolysis is applied to study the recombination reaction of lophyl radicals in ionic liquids in comparison with dimethylsulfoxide as an example of a traditional organic solvent. The latter exhibits a similar micropolarity as the ionic liquids. The ionic liquids investigated are 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ( 1 ), 1‐hexyl‐3‐methylimidazolium hexafluorophosphate ( 2 ), and 1‐butyl‐3‐methylimidazolium tetafluoroborate ( 3 ). The recombination of the photolytic generated lophyl radicals occur significantly faster in the ionic liquids than expected from their macroscopic viscosities and is a specific effect of these ionic liquids. On the other hand, this reaction can be compared with the macroscopic viscosity in the case of dimethylsulfoxide. Activation parameters obtained for lophyl radical recombination suggest different, anion‐dependent mechanistic effects. Quantum chemical calculations based on density functional theory provide a deeper insight of the molecular properties of the lophyl radical and its precursor. Thus, excitation energies, spin densities, molar volumes, and partial charges are calculated. Calculations show a spread of spin density over the three carbon atoms of the imidazolyl moiety, while only low spin density is calculated for the nitrogens.  相似文献   

2.
This paper reports on the electrodeposition of aluminium on several substrates from the air‐ and water‐stable ionic liquids 1‐propyl‐1‐methylpiperidinium bis(trifluoromethylsulfonyl)amide ([C3mpip][NTf2]) and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([C4mpyr][NTf2]), which contain anhydrous AlCl3. At an AlCl3 concentration of 0.75 molal, no evidence for aluminium electrodeposition was observed in either system at room temperature. However, aluminium electrodeposition becomes feasible upon heating the samples to 80 °C. Aluminium electrodeposition from bis(trifluoromethylsulfonyl)amide‐based ionic liquids that contain AlCl3 has previously been shown to be very dependent upon the AlCl3 concentration and has not been demonstrated at AlCl3 concentrations below 1.13 molal. The dissolution of AlCl3 in [C3mpip][NTf2] and [C4mpyr][NTf2] was studied by variable‐temperature 27Al NMR spectroscopy to gain insights on the electroactive species responsible for aluminium electrodeposition. A similar change in the aluminium speciation with temperature was observed in both ionic liquids, thereby indicating that the chemistry was similar in both. The electrodeposition of aluminium was shown to coincide with the formation of an asymmetric four‐coordinate aluminium‐containing species with an 27Al chemical shift of δ=94 and 92 ppm in the [C3mpip][NTf2]–AlCl3 and [C4mpyr][NTf2]–AlCl3 systems, respectively. It was concluded that the aluminium‐containing species that give rise to these resonances corresponds to the electroactive species and was assigned to [AlCl3(NTf2)]?.  相似文献   

3.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   

4.
We previously reported the use of imidazole as starting compound for preparing a bicyclic imidazolium ionic liquid, [b-3C-im][NTf2], with an overall 29% isolated yield in four synthetic steps. This new room temperature ionic liquid was shown to be far more chemically stable than commonly used [bmim][PF6], [bdmim][PF6], and [bdmim][NTf2]. Because of this intriguing chemical stability, it prompted us to develop a more generalized and high yielding synthesis so that molecular diversity of bicyclic ionic liquids may be explored. In this work, we amended the previous synthetic route by employing 4-chlorobutyronitrile or 5-chlorovaleronitrile as starting materials and successfully developed a five-step synthesis of a series of novel bicyclic imidazolium-based ionic liquids in 40-53% overall isolated yields. We investigated intrinsic reactivity of all bicyclic ionic liquids prepared and found that, under strongly basic conditions, among all tested ionic liquids the 5,5-membered [R-3C-im][NTf2] ionic liquids were most stable to solvent deuterium isotope exchange while the previously reported [bdmim][NTf2] ionic liquid was 50% deuterium exchanged at its C-2 methyl in 30 min at ambient temperature. Under identical condition, the commonly used [bmim][NTf2] ionic liquid was deuterium exchanged instantaneously at its C-2 hydrogen. In the absence of bases, only [bmim][PF6] was deuterium exchanged (50% within 1 h) and all other ionic liquids gave no detectable exchanges even after 25 days at ambient temperature. Moreover, both [bmim][NTf2] and [bdmim][NTf2] ionic liquids were readily methylated at C-2 position with methyl iodide under basic condition at room temperature. Under the same condition, [R-3C-im][NTf2] and [R-4C-im][NTf2] ionic liquids were completely stable and chemically inert. We envisioned that [R-3C-im][NTf2] should be well suited as solvents for organic synthesis.  相似文献   

5.
We report on the abrasive stripping voltammetry (AbrSV) of six different solid compounds of widely different natures in room temperature ionic liquids (RTILs). Copper as a metal representative, Prussian blue as a typical inorganic complex, indigo as an organic dye model, and anthracene, pyrene, and 9,10‐diphenylanthracene as the typical representatives of aromatic hydrocarbons were chosen in this study. They were immobilized on a gold electrode surface by mechanical abrasion and their subsequent voltammetric measurements were carried out in the ionic liquid [C4mim][NTf2], 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide. The present work demonstrates that RTILs provide an excellent electrochemical solvent environment for abrasive stripping voltammetric analysis; in particular, the much wider potential windows in RTILs as compared to aqueous media greatly enhance the analytical applicability of the AbrSV technique.  相似文献   

6.
The majority of free radicals are highly reactive species which participate in bimolecular reactions with each other. Validation of the theory of molecular diffusion and reactivity in the liquid state requires knowledge of rate constants of radical–radical reactions (recombination, disproportionation) and their viscosity dependencies. An accurate comparison of theory and experiment has become available due to experimentally measured diffusion coefficients of reactive radicals by transient grating technique. Initial distribution of radicals in solution can be not random but pair-wise as in photo- or thermoinitiation of free radical polymerization reactions. Probability of a radical escape of a partner (cage escape) characterizes the initiator efficiency. Despite decades of measurement of cage effect values, cage effect dynamics with free radicals have only been investigated quite recently. The present tutorial review considers the effect of viscosity of Newtonian liquid on two types of recombination—in the solvent bulk and in a cage. Further, since radicals are paramagnetic species, external magnetic field affects probability of their reactions in pairs. These effects are also observed in viscous liquids, and reasons for such observations are explained. The recently discovered low magnetic field effect is also observed on radical pairs in viscous liquids.  相似文献   

7.
In this work 12 different ionic liquids (ILs) have been used added as co‐binders in the preparation of modified carbon paste electrodes (IL–CPEs) used for the voltammetric analysis of dopamine in Britton‐Robinson buffer. The ionic liquids studied were selected based on three main criteria: (1) increasing chain length of alkyl substituents (studying 1‐ethylimidazolium and ethyl, propyl, butyl, hexyl and decylmethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids); (2) nature of the counter ion (dicyanamide, bis(trifluoromethylsulfonyl)imide and hexafluorophosphate) in 1‐butyl‐3‐methylimidazolium ionic liquids; and (3) cation ring structures (1‐butyl‐3‐methylimidazolium, 1‐butyl‐1‐methylpiperidinium, 1‐butyl‐1‐methylpyrrolidinium and 1‐butyl‐3‐methylpyridinium) in bis(trifluoromethylsulfonyl)imide or hexafluorophosphate (1‐butyl‐3‐methylimidazolium or 1‐butyl‐3‐methylpyridinium as cations) ionic liquids. The use of IL as co‐binders in IL–CPE results in a general enhancement of both the sensitivity and the reversibility of dopamine oxidation. In square wave voltammetry experiments, the peak current increased up to a 400 % when 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used as co‐binder, as compared to the response found with the unmodified CPE. Experimental data provide evidence that electrostatic and steric effects are the most important ones vis‐à‐vis these electrocatalytic effects on the anodic oxidation of dopamine on IL–CPE. The relative hydrophilicity of dicyanamide anions reduced the electrocatalytic effects of the corresponding ionic liquids, while the use of 1‐ethyl‐3‐methylimidazolium hexafluorophosphate or 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (two relatively small and highly hydrophobic ionic liquids) as co‐binders in IL–CPE resulted in the highest electrocatalytic activity among all of the IL–CPE studied.  相似文献   

8.
Polymeric forms of ionic liquids have many potential applications because of their high thermal stability and ionic nature. Two ionic liquid monomers, 1‐(4‐vinylbenzyl)‐3‐butyl imidazolium tetrafluoroborate (VBIT) and 1‐(4‐vinylbenzyl)‐3‐ butyl imidazolium hexafluorophosphate (VBIH), were synthesized through the quaternization of N‐butylimidazole with 4‐vinylbenzylchloride and a subsequent anion‐ exchange reaction with sodium tetrafluoroborate or potassium hexafluorophosphate. Copper‐mediated atom transfer radical polymerization was used to polymerize VBIT and VBIH. The effects of various initiator/catalyst systems, monomer concentrations, solvent polarities, and reaction temperatures on the polymerization were examined. The polymerization was well controlled and exhibited living characteristics when CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine or CuBr/2,2′‐bipyridine was used as the catalyst and ethyl 2‐bromoisobutyrate was used as the initiator. Characterizations by thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction showed that the resulting VBIT polymer, poly[1‐(4‐vinylbenzyl)‐3‐butyl imidazolium tetrafluoroborate] (PVBIT), was amorphous and had excellent thermal stability, with a glass‐transition temperature of 84 °C. The polymerized ionic liquids could absorb CO2 as ionic liquids: PVBIT absorbed 0.30% (w/w) CO2 at room temperature and 0.78 atm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1432–1443, 2005  相似文献   

9.
A novel 1‐butyl‐3‐methylimidazolium chloride ionic liquid surface imprinted solid‐phase sorbent was synthesized. The as‐prepared material was characterized by SEM, Brunauer–Emmett–Teller surface area analysis and Fourier Transform IR measurements. Then its adsorption properties for alkyl imidazolium ionic liquids, including adsorption capacities, adsorption kinetics, and properties of selective separation and enrichment were studied in detail. It was shown that the ionic liquid surface imprinted polymer exhibited high selective recognition characteristics for the imidazolium chloride ionic liquids with short alkyl chains (CnmimCl, n = 2, 4, 6, 8) and the adsorption equilibrium was achieved within 25 min. Various parameters were optimized for the 1‐butyl‐3‐methylimidazolium chloride ionic liquid surface imprinted polymer SPE column, such as flow rate, eluent solvent, selectivity, and reusability of the column. Then, the SPE column coupled with HPLC was used for the determination of alkyl imidazolium ionic liquids. Experimental results showed that the existence of their structural analogs and common concomitants in environmental matrices did not affect the enrichment of 1‐butyl‐3‐methyl imidazolium chloride ionic liquid. The average recoveries of 1‐butyl‐3‐methylimidazolium chloride ionic liquid in spiked water samples were in the range of 92.0–102.0% with the RSD lower than 5.8%.  相似文献   

10.
The hydrophobic ionic liquid 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was successfully used as solvent in group transfer polymerization of traditional methacrylates (methyl methacrylate, n‐butyl methacrylate, and benzyl methacrylate) and of ionic liquid methacrylates (ILMAs). This demonstrates that this ionic liquid makes reaction conditions, which do not require the use of ultra‐dried solvents. The ILMAs were N‐[2‐(methacryloyloxy)ethyl]‐N,N‐dimethyl‐N‐alkylammonium bis(trifluoromethylsulfonyl)imides bearing methyl, ethyl, propyl, butyl, or hexyl substituents. Increasing size of the alkyl substituent at the cation results in decreasing glass transition temperature in case of both ionic liquid methacrylates and polymers derived of them. Furthermore, the glass transition temperature is significantly higher for these polymers compared with the ionic liquid methacrylates, and the effect of glass transition temperature reduction with increasing size of the alkyl substituent is stronger for the polymers. A mechanism was proposed explaining the catalytic function of the ionic liquid used as solvent for polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2849–2859  相似文献   

11.
12.
Carbon nanodots (C‐dots) with an average size of 1.5 and 3.0 nm were produced by laser ablation in different imidazolium ionic liquids (ILs), namely, 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMI.BF4), 1‐n‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) and 1‐n‐octyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (OMI.NTf2). The mean size of the nanoparticles is influenced by the imidazolium alkyl side chain but not by the nature of the anion. However, by varying the anion (BF4 vs. NTf2) it was possible to detect a significant modification of the fluorescence properties. The C‐dots are much probably stabilised by an electrostatic layer of the IL and this interaction has played an important role with regard to the formation, stabilisation and photoluminescence properties of the nanodots. A tuneable broadband fluorescence emission from the colloidal suspension was observed under ultraviolet/visible excitation with fluorescence lifetimes fitted by a multi‐exponential decay with average values around 7 ns.  相似文献   

13.
Steady‐state and time‐resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1‐ethyl‐3‐methylimidazolium alkylsulfate ([C2mim][CnOSO3]) ionic liquids differing only in the length of the linear alkyl chain (n=4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady‐state absorption and emission maxima of C153 on going from the C4OSO3 to the C8OSO3 system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time‐zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes–Einstein–Debye (SED), Gierer–Wirtz (GW), and Dote–Kivelson–Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity.  相似文献   

14.
The volatilisation of ferrocene (Fc), dissolved in the ionic liquid N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C4mpyrr][NTf2], to the gas phase has been indirectly monitored by cyclic voltammetry and chronoamperometry. Simulation of the observed trends in concentration with time using a simple model allowed quantification of the process. Volatilisation of dissolved Fc under flowing wet and dry dinitrogen gas (N2) was found to be kinetically limited with a rate constant in the region of 2×10?7 cm s?1. The activation energy of diffusion for Fc was found to be 28.2±0.7 kJ mol?1, while the activation energy of volatilisation of Fc from [C4mpyrr][NTf2] to dry N2 was found to be 85±2 kJ mol?1.  相似文献   

15.
The electrochemistry of zirconium tetrachloride in the ionic liquid N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide has been studied, and the one electron reduction is proved by chronoamperometry. Furthermore, we report the application of ZrCl4 as a facile and general ionic liquid drying agent for use in voltammetry.  相似文献   

16.
Lignin is potentially a major renewable, nonfossil source of aromatic and cyclohexyl compounds. In this study, we have investigated the abrasive stripping voltammetry of lignin and four lignin model compounds in the room temperature ionic liquids (RTILs) [C4mim][NTf2], [N6,2,2,2][NTf2] and [C4mim][OTf] (where [C4mim]+=1‐butyl‐3‐methylimidazolium, [N6,2,2,2]+=n‐hexyltriethylammonium, [NTf2]?=bis(trifluoromethanesulfonyl)imide and [OTf]? =trifluoromethanesulfonate) on a gold macrodisk and in 0.1 M H2SO4 and 0.1 M NaOH on a boron‐doped diamond (BDD) macroelectrode, with the hope of using the voltammetry to fingerprint the functional groups within the lignin molecule. The use of RTILs on metal electrodes, or either acidic or basic media in combination with BDD electrodes allows solvent systems with wide electrochemical potential windows, useful for studying voltammetry which may be difficult to observe in systems where early breakdown of the solvent occurs.  相似文献   

17.
A facile approach of polypyrrole (PPy)/tungsten oxide (WO3) composites electrosynthesized in ionic liquids for fabrication of electrochromic devices is discussed. The electrochromic properties of PPy/tungsten oxide nanocomposite films (PPy/WO3) prepared in the presence of four different ionic liquids, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were investigated in detail. Cyclic voltammetry results revealed that PPy/WO3 nanocomposite films have much more electrochemical activity than those of WO3 and PPy film. The electrochromic contrast, coloration efficiency, and switching speed of the composite films were determined for electrochromic characteristics. The maximum contrast and the maximum coloration efficiency values were measured as 33.25% and 227.89 cm2/C for the PPy/WO3/BMIMTFSI composite film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
It is a very urgent and important task to improve the safety and high‐temperature performance of lithium/lithium‐ion batteries (LIBs). Here, a novel ionic liquid, 1‐(2‐ethoxyethyl)‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR1(2o2)TFSI), was designed and synthesized, and then mixed with dimethyl carbonate (DMC) as appropriate solvent and LiTFSI lithium salt to produce an electrolyte with high ionic conductivity for safe LIBs. Various characterizations and tests show that the highly flexible ether group could markedly reduce the viscosity and provide coordination sites for Li‐ion, and the DMC could reduce the viscosity and effectively enhance the Li‐ion transport rate and transference number. The electrolyte exhibits excellent electrochemical performance in Li/LiFeO4 cells at room temperature as well as at a high temperature of 60 °C. More importantly, with the addition of DMC, the IL‐based electrolyte remains nonflammable and appropriate DMC can effectively inhibit the growth of lithium dendrites. Our present work may provide an attractive and promising strategy for high performance and safety of both lithium and lithium‐ion batteries.  相似文献   

19.
Dynamic viscosities of several members of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, [Cnmim][NTf2], ionic liquids family, with the cation alkyl side-chain length varying from 2 to 14 carbon atoms, have been measured in the 278.15 K to 393.15 K temperature range using two different apparatuses. To the best of our knowledge, it is the first time that such an extensive assessment of viscosity - in terms of the number of compounds of a single ionic liquid homologous series, of the broad range of temperature covered, and the use of two different experimental techniques - is reported. The use of two different instruments, using different methodologies, provides information about the uncertainties in the measurement of viscosity of ionic liquids, including its dependence on the presence of traces of water and other impurities. An extensive critical analysis of the deviations between the data measured in this work and those reported in literature has been carried out.  相似文献   

20.
This article represents a step towards how to choose an ionic liquid as the solvent to improve metal ion (Ag+ and Pb2+) extraction. The liquid-liquid solvent extraction is proposed with the following imidazolium ionic liquids (ILs): 1-ethyl-3-ethylimidazolium, or 1-butyl-3-ethylimidazolium, or 1-hexyl-3-ethylimidazolium bis{(trifluoromethyl)sylfonyl}imide [EEIM][NTf2], or [BEIM][NTf2], or [HEIM][NTf2], or 1-butyl-3-ethylimidazolium hexafluorophosphate [BEIM][PF6], or 1-hexyl-3-ethylimidazolium hexafluorophosphate [HEIM][PF6] and the popular 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] for comparison. The effect of anion type (NTf2 versus PF6) and the effect of structural components of an ionic liquid including alkyl chain length at the cation and the ethyl substituent instead methyl at the cation, on the extraction and re-extraction processes by using dithizone as a metal chelator, were studied at 296 K. Dithizone was employed to form neutral metal-dithizone complexes with heavy metal ions to extract them from aqueous solution into the ILs. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users. Presented at the 236th ACS National Meeting, August 17–21, Philadelphia, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号