首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so‐called hanging‐atop (HAT) PbII cation to regular PbII porphyrin complexes allowed a stereoselective incorporation of the N‐core bound cation, and an allosterically controlled Newton’s cradle‐like motion of the two PbII ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT PbII coordination. The nature of the N‐core bound metal ion (ZnII, CdII), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through 1H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis‐strap ligands have been considered. They all incorporate a COOH group hung over the N‐core on one side. For the bis‐strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear ZnII or CdII complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT PbII. An allosteric effector (e.g., 4‐dimethylaminopyridine (DMAP), in the case of a single‐strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO?, is required to switch the N‐core bound cation to the opposite side with concomitant release of the COO?, thereby allowing HAT PbII complexation. In the absence of a base, ZnII or CdII binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT PbII. Thus, either allosteric or acid–base control is achieved through stereoselective metalation of ZnII or CdII. In the latter case, according to the deprotonation state of the COOH group, the best electron‐donating ligand is located on one or the other side of the porphyrin (COO?>CONHR>COOR>COOH): the lower affinity of COOH for ZnII and CdII, the higher for a HAT PbII. These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches.  相似文献   

2.
Inspired by a Newton’s cradle device and interested in the development of redox‐controllable bimetallic molecular switches, a mixed‐valence thallium(III)/thallium(I) bis‐strap porphyrin complex, with TlIII bound out of the plane of the N core and TlI hung to a strap on the opposite side, was formed by the addition of TlOAc to the free base and exposure to indirect sunlight. In this process, oxygen photosensitization by the porphyrin allows the oxidation of TlI to TlIII. The bimetallic complex is dynamic as the metals exchange their positions symmetrically to the porphyrin plane with TlIII funneling through the macrocycle. Further exposure of the complex to direct sunlight leads to thallium dissociation and to total recovery of the free base. Hence, the porphyrin plays a key role at all stages of the cycle of the complex: It hosts two metal ions, and by absorbing light, it allows the formation and dissociation of TlIII. These results constitute the basis for the further design of innovative light‐driven bimetallic molecular devices.  相似文献   

3.
3‐(Pyridin‐4‐yl)acetylacetone (HacacPy) acts as a pyridine‐type ligand towards CdII and HgII halides. With CdBr2, the one‐dimensional polymer [Cd(μ‐Br)2(HacacPy)Cd(μ‐Br)2(HacacPy)2] is obtained in which five‐ and six‐coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ‐Br)Br(HacacPy)], a polymer in which each HgII centre is tetracoordinated. In both compounds, each metal(II) cation is N‐coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well‐ordered bimetallic polymer catena‐poly[[bromidomercury(II)]‐μ‐bromido‐[aquabis[4‐hydroxy‐3‐(pyridin‐4‐yl)pent‐3‐en‐2‐one]cadmium(II)]‐di‐μ‐bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ‐Br){(HacacPy)2Cd(H2O)}(μ‐Br)2]. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetracoordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octahedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N‐atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—H…Br hydrogen bonds stabilize the polymeric chain. O—H…O hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.  相似文献   

4.
Self‐assembled bi‐ and polymetallic complexes of CoII, NiII, ZnII, and CdII were obtained by the reaction of 4,4′‐azopyridine (azpy) with metal tri‐tert‐butoxysilanethiolates (Co, 1 ; Cd, 2 ), acetylacetonates (Ni, 3 ; Zn, 4 ), and acetates (Cd, 5 ). All compounds were characterized by single‐crystal X‐ray structure analysis, elemental analysis, FTIR spectroscopy, and thermogravimetry. Complexes 1 , 2 and 4 , 5 exhibit diverse structural conformations: 1 is bimetallic, 2 and 4 are 1D coordination polymers, and 5 is a 2D coordination framework formed from bimetallic units. The obtained complexes contain metal atoms bridged by a molecule of azpy. The luminescent properties of 1–5 were investigated in the solid state.  相似文献   

5.
Reaction of CdII and ZnII thiocyanate with 3‐acetylpyridine leads to the formation of the new CdII and ZnII coordination compounds [Cd(NCS)2(3‐acetylpyridine)4] ( 1A ), [Cd(NCS)2(3‐acetylpyridine)2]n ( 1B ), [Cd(NCS)2(3‐acetylpyridine)]n ( 1C ) and [Zn(NCS)2(3‐acetylpyridine)2] ( 2A ). Compound 1A consists of discrete complexes, in which the metal centers are octahedrally coordinated by four terminal bonded N‐donor co‐ligands and two terminal N‐bonded thiocyanato anions. In compound 2A the metal centers are only tetrahedrally coordinated by two terminal bonded N‐donor co‐ligands and two terminal N‐bonded thiocyanato anions. In compound 1B the CdII cations are octahedrally coordinated by two terminal bonded N‐donor co‐ligands and four thiocyanato anions. The metal centers are linked by μ‐1, 3 bridging thiocyanato anions into chains. In compound 1C the metal cations are octahedrally coordinated by two μ‐1, 5 bridging 3‐acetyl‐pyridine ligands and four μ‐1, 3 bridging thiocyanato anions building up a three‐dimensional coordination network. Investigations on the thermal degradation behavior of all compounds using simultaneous differential thermoanalysis and thermogravimetry as well as X‐ray powder diffraction and IR spectroscopy prove that on heating compound 2A decompose without the formation of 3‐acetylpyridine‐deficient intermediates. In contrast, for compound 1A a stepwise decomposition is observed, leading to the formation of the 3‐acetylpyridine‐deficient compound [Cd(NCS)2(3‐acetylpyridine)2]n ( 1B ) which decomposes on further heating  相似文献   

6.
A structural rationale was adopted to design a series of metallogels from a newly synthesized urea‐functionalized dicarboxylate ligand, namely, 5‐[3‐(pyridin‐3‐yl)ureido]isophthalic acid ( PUIA ), that produces metallogels upon reaction with various metal salts (CuII, ZnII, CoII, CdII, and NiII salts) at room temperature. The gels were characterized by dynamic rheology and transmission electron microscopy (TEM). The existence of a coordination bond in the gel state was probed by FTIR and 1H NMR spectroscopy in a ZnII metallogel (i.e., MG2 ). Single crystals isolated from the reaction mixture of PUIA and CoII or CdII salts characterized by X‐ray diffraction revealed lattice inclusion of solvent molecules, which was in agreement with the hypothesis based on which the metallogels were designed. MG2 displayed anti‐inflammatory response (prostaglandin E2 assay) in the macrophage cell line (RAW 264.7) and anticancer properties (cell migration assay) on a highly aggressive human breast cancer cell line (MDA‐MB‐231). The MG2 metallogel matrix could also be used to load and release (pH responsive) the anticancer drug doxorubicin. Fluorescence imaging of MDA‐MB‐231 cells treated with MG2 revealed that it was successfully internalized.  相似文献   

7.
The solution properties of a series of transition‐metal–ligand coordination polymers [ML(X)n] [M=AgI, ZnII, HgII and CdII; L=4,4′‐bipyridine (4,4′‐bipy), pyrazine (pyz), 3,4′‐bipyridine (3,4′‐bipy), 4‐(10‐(pyridin‐4‐yl)anthracen‐9‐yl)pyridine (anbp); X=NO3?, CH3COO?, CF3SO3?, Cl?, BF4?; n=1 or 2] in the presence of competing anions, metal cations and ligands have been investigated systematically. Providing that the solubility of the starting complex is sufficiently high, all the components of the coordination polymer, namely the anion, the cation and the ligand, can be exchanged on contact with a solution phase of a competing component. The solubility of coordination polymers is a key factor in the analysis of their reactivity and this solubility depends strongly on the physical properties of the solvent and on its ability to bind metal cations constituting the backbone of the coordination polymer. The degree of reversibility of these solvent‐induced anion‐exchange transformations is determined by the ratio of the solubility product constants for the starting and resultant complexes, which in turn depend upon the choice of solvent and the temperature. The extent of anion exchange is controlled effectively by the ratio of the concentrations of incoming ions to outgoing ions in the liquid phase and the solvation of various constituent components comprising the coordination polymer. These observations can be rationalised in terms of a dynamic equilibrium of ion exchange reactions coupled with Ostwald ripening of crystalline products. The single‐crystal X‐ray structures of [Ag(pyz)ClO4] ( 1 ), {[Ag(4,4′‐bipy)(CF3SO3)] ? CH3CN} ( 2 ), {[Ag(4,4′‐bipy)(CH3CN)]ClO4 ? 0.5 CH3CN} ( 3 ), metal‐free anbp ( 4 ), [Ag(anbp)NO3(H2O)] ( 5 ), {[Cd(4,4′‐bipy)2(H2O)2](NO3)2 ? 4 H2O} ( 6 ) and {[Zn(4,4′‐bipy)SO4(H2O)3] ? 2 H2O} ( 7 ) are reported.  相似文献   

8.
The combination of a bent diamino(nickel(II) porphyrin) with 2‐formylpyridine and FeII yielded an FeII4L6 cage. Upon treatment with the fullerenes C60 or C70, this cage was found to transform into a new host–guest complex incorporating three FeII centers and four porphyrin ligands, in an arrangement that is hypothesized to maximize π interactions between the porphyrin units of the host and the fullerene guest bound within its central cavity. The new complex shows coordinative unsaturation at one of the FeII centers as the result of the incommensurate metal‐to‐ligand ratio, which enabled the preparation of a heterometallic cone‐shaped CuIFeII2L4 adduct of C60 or C70.  相似文献   

9.
A simple, one‐step, supramolecular strategy was adopted to synthesize SnIV‐porphyrin‐based axially bonded triads and higher oligomers by using meso‐pyridyl SnIV porphyrin, meso‐hydroxyphenyl‐21,23‐dithiaporphyrin, and RuII porphyrin as building blocks and employing complementary and non‐interfering SnIV?O and RuII ??? N interactions. The multiporphyrin arrays are stable and robust and were purified by column chromatography. 1H, 1H–1H COSY and NOESY NMR spectroscopic studies were used to unequivocally deduce the molecular structures of SnIV‐porphyrin‐based triads and higher oligomers. Absorption and electrochemical studies indicated weak interaction among the different porphyrin units in triads and higher oligomers, in support of the supramolecular nature of the arrays. Steady‐state fluorescence studies on triads indicated the possibility of energy transfer in the singlet state from the basal SnIV porphyrin to the axial 21,23‐dithiaporphyrin. However, the higher oligomers were weakly fluorescent due to the presence of heavy RuII porphyrin unit(s), which quench the fluorescence of the SnIV porphyrin and 21,23‐dithiaporphyrin units.  相似文献   

10.
The title complex, [CdCl(NCS)(C10H8N2)]n, represents an unusual CdII coordination polymer constructed by two types of anionic bridges and 2,2′‐bipyridyl (bipy) terminal ligands. These two types of bridges are arranged around inversion centers. The distorted octahedral coordination of the CdII center is provided by two chloride ions, one N‐ and one S‐donor atom from two thiocyanate ions, and a pair of N atoms from the chelating bipy ligand. Interestingly, adjacent CdII ions are interconnected alternately by paired chloride [Cd...Cd = 3.916 (1) Å] and thiocyanate bridges [Cd...Cd = 5.936 (1) Å] to generate an infinite one‐dimensional coordination chain. Furthermore, weak interchain C—H...S interactions between the bipy components and thiocyanate ions lead to the formation of a layered supramolecular structure.  相似文献   

11.
Three coordination polymers, namely {[Cu(5‐nipa)(L22)](H2O)2}n ( 1 ), [Zn(5‐nipa)(L22)(H2O)]n ( 2 ), and {[Cd2(5‐nipa)2(L22)(H2O)3](H2O)3.6}n ( 3 ), were prepared under similar synthetic method based on 1,2‐(2‐pyridyl)‐1,2,4‐triazole (L22) and ancillary ligand 5‐nitro‐isophthalic acid (5‐H2nipa) with CuII, ZnII, and CdII perchlorate, respectively. All the complexes were characterized by IR spectroscopy, elemental analysis, and powder X‐ray diffraction (PXRD) patterns. Single‐crystal X‐ray diffraction indicates that complexes 1 and 2 show similar 1D chain structures, whereas complex 3 exhibits the 2D coordination network with hcb topology. The central metal atoms show distinct coordination arrangements ranging from distorted square‐pyramid for CuII in 1 , octahedron for ZnII in 2 , to pentagonal‐bipyramid for CdII in 3 . The L22 ligand adopts the same (η32) coordination fashion in complexes 1 – 3 , while the carboxyl groups of co‐ligand 5‐nipa2– adopt monodentate fashion in 1 and 2 and bidentate chelating mode in 3 . These results indicate that the choice of metal ions exerts a significant influence on governing the target complexes. Furthermore, thermal stabilities of complexes 1 – 3 and photoluminescent properties of 2 and 3 were also studied in the solid state.  相似文献   

12.
A new bimetallic FeII–CuII complex was synthesized, characterized, and applied as a selective and sensitive sensor for cyanide detection in water. This complex is the first multifunctional device that can simultaneously detect cyanide ions in real water samples, amplify the colorimetric signal upon detection for naked‐eye recognition at the parts‐per‐million (ppb) level, and convert the toxic cyanide ion into the much safer cyanate ion in situ. The mechanism of the bimetallic complex for high‐selectivity recognition and signaling toward cyanide ions was investigated through a series of binding kinetics of the complex with different analytes, including CN?, SO42?, HCO3?, HPO42?, N3?, CH3COO?, NCS?, NO3?, and Cl? ions. In addition, the use of the indicator/catalyst displacement assay (ICDA) is demonstrated in the present system in which one metal center acts as a receptor and inhibitor and is bridged to another metal center that is responsible for signal transduction and catalysis, thus showing a versatile approach to the design of new multifunctional devices.  相似文献   

13.
Liu  Qi  Li  Baolong  Xu  Zheng  Sun  Xiaoqiang  Yu  Kaibei 《Transition Metal Chemistry》2002,27(7):786-789
The self-assembly of the CdII ion, hexamethylenetetramine (hmt) and malonate ligand yields a three-dimensional (3D) coordination polymer [Cd2(C3H2O4)2(H2O)2( 2-hmt)] n with channels. The CdII ion is located in a octahedral coordination environment, composed of four oxygen atoms from three malonates, one oxygen atom of water and one nitrogen atom of hmt. Two oxygen atoms of each malonate coordinate to the same CdII ion and the other two oxygen atoms connect to adjacent two CdII ions respectively to form a two-dimensional infinite network, these networks are bridged by 2-hmt coordinated to CdII ions to product a 3D architecture.  相似文献   

14.
The asymmetric unit of the title complex, [CdCl2(C14H12N4O2S)2]n, consists of one CdII ion located on the crystallographic inversion centre, one 4‐benzoyl‐1‐isonicotinoylthiosemicarbazide ligand and one chloride ligand. The central CdII ion adopts a distorted octahedral coordination geometry formed by two pyridyl N atoms of two ligands, two S atoms of two other ligands and two chloride ligands. The thiosemicarbazide ligands act as bridges, linking the metal ions into a two‐dimensional layered structure parallel to the bc plane. Intermolecular N—H...O hydrogen bonds and C—H...π interactions exist between adjacent layers.  相似文献   

15.
The stability constants and structure of the complexes of CdII and ZnII with 1-ethoxymethylimidazole (ExMeIm), 1-propoxymethylimidazole (PxMeIm), 1-ethoxymethyl-2-methylimidazole (ExMe-2-MeIm) and 1-propoxymethyl-2-methylimidazole (PxMe-2-MeIm) in aqueous solution have been determined by potentiometric methods. ZnII form both tetrahedral and octahedral species with the cited ligands according to the configurational equilibrium type: octahedron tetrahedron, but CdII prefers octahedral coordination of alkoxymethylimidazole complexes in aqueous solution. Retention of the six-coordination form of CdII has also been confirmed by the data obtained for two novel compounds which have been synthesized in the solid state. The crystal and molecular structure of [Cd(ExMeIm)4(NO3)2] (1) has been determined by X-ray diffraction. The coordination geometry around the CdII ion can be considered as slightly distorted tetragonal bipyramidal (CdN4O2). Additionally, another six-coordinate CdII compound with ethoxymethyl-2-methylimidazole [Cd(ExMe-2-MeIm)4(H2O)](NO3)2 (2) has been characterized by spectroscopic (i.r., far i.r., Raman) ES–MS and t.g.a. methods.  相似文献   

16.
Compared with their purely organic counterparts, molecular switches that are based on metal ion translocations have been underexplored, and more particularly, it remains challenging to control the translocation of several particles in multisite receptors. Recently, bimetallic complexes that undergo double translocation processes have been developed with bis-strapped porphyrin ligands. To implement a redox control for these systems, we have investigated the formation of heterobimetallic lead/thallium complexes, with thallium in the +I and +III oxidation states. Two different complexes were characterized: 1) a PbII/TlI complex, in which both metal ions interact with the N-core on its different sides, and 2) a PbII/TlIII complex with TlIII selectively bound to the N-core and PbII selectively bound to the strap opposite to TlIII. These two complexes undergo interconversion between their two degenerate forms (same coordination of the metal ions but on opposite sides) by different intra or intermolecular translocation pathways. In addition, conversion of the PbII/TlI complex into its PbII/TlIII counterpart was achieved by addition of a stoichiometric amount of HgII salt as a sacrificial electron acceptor. These results further contribute to the elaboration of devices that feature redox-controlled compartmentalized double translocations.  相似文献   

17.
The asymmetric unit of the title two‐dimensional coordination polymer, {[Cd(C14H8O4)(C14H14N4)]·0.15H2O}n, is composed of one CdII cation, one biphenyl‐2,4′‐dicarboxylate (bpdc) anion, one 1,4‐bis(imidazol‐1‐ylmethyl)benzene (bix) ligand and 0.15 solvent water molecules. The coordination environment of the CdII cation is defined by four carboxylate O atoms from two different bpdc anions in a chelating mode and two N atoms from two distinct bix ligands, constructing a distorted trigonal prism polyhedron. Two inversion‐related CdII cations are bridged together by two positionally disordered bpdc anions, forming a 22‐membered ring with a Cd...Cd distance of 9.1966 (9) Å. These rings are then further linked by two bix ligands, extending into a two‐dimensional layer along (102) with 63 topology.  相似文献   

18.
Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion‐symmetric ligand 2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalic acid (abbreviated as H2bttpa) links CdII cations, giving rise to the three‐dimensional CdII coordination polymer catena‐poly[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato‐κ4O1:O4:N4:N4′]cadmium(II)], [Cd(C12H6N6O4)(H2O)2]n or [Cd(bttpa)(H2O)2]n. The asymmetric unit consists of half a CdII cation, half a bttpa2− ligand and one coordinated water molecule. The CdII cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa2− ligands contribute to this coordination, with two carboxylate O atoms in trans positions and two triazole N atoms in cis positions. Two aqua ligands in cis positions complete the coordination sphere. The fully deprotonated bttpa2− ligand sits about a crystallographic centre of inversion and links two CdII cations to form a chain in a μ2‐terephthalato‐κ2O1:O4 bridge. This chain extends in the other two directions via the triazole heterocycles, producing a three‐dimensional framework. O—H…O hydrogen bonds and weak C—H…N interactions stabilize the three‐dimensional crystal structure. The FT–IR spectrum, X‐ray powder pattern, thermogravimetric behaviour and solid‐state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red‐shifted with respect to the uncoordinated ligand.  相似文献   

19.
In the title cadmium(II) coordination polymer, poly[tri‐μ4‐adipato‐bis(2‐phenyl‐1H‐1,3,7,8‐tetraazacyclopenta[l]phenanthrene‐κ2N7,N8)tricadmium(II)], [Cd3(C6H8O4)3(C19H12N4)2]n, one of the Cd atoms is in a distorted pentagonal bipyramidal coordination environment, surrounded by five O atoms from three adipate (adip) ligands and two N atoms from one 2‐phenyl‐1H‐1,3,7,8‐tetraazacyclopenta[l]phenanthrene (L) ligand. A second Cd atom occupies an inversion center and is coordinated by six O atoms from six adip ligands in a distorted octahedral geometry. The carboxylate ends of the adip ligands link CdII atoms to form unique trinuclear CdII clusters, which are further bridged by the adip linkers to produce a two‐dimensional layer structure. Topologically, each trinuclear CdII cluster is connected to four others through six adip ligands, thus resulting in a unique two‐dimensional four‐connected framework of (4,4)‐topology. This work may help the development of the coordination chemistry of 1,10‐phenanthroline derivatives.  相似文献   

20.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号