首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High yielding syntheses of 1‐(ferrocenylmethyl)‐3‐mesitylimidazolium iodide ( 1 ) and 1‐(ferrocenylmethyl)‐3‐mesitylimidazol‐2‐ylidene ( 2 ) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis‐1,5‐cyclooctadiene) or [Ru(PCy3)Cl2(?CH‐o‐O‐iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir( 2 )(cod)Cl]) and 5 ([Ru( 2 )Cl2(?CH‐o‐O‐iPrC6H4)]), respectively. Complex 4 ([Ir( 2 )(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron‐donating ability of the N‐heterocyclic carbene ligand (ΔTEP=9 cm?1; TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η5‐C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [ 5 ][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95 % yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [ 5 ][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [ 5 ][BF4] were found to catalyze the ring‐closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo‐first‐order rate constants (kobs) of 3.1×10?4 and 1.2×10?5 s?1, respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second‐generation N‐heterocyclic carbene that featured a 1′,2′,3′,4′,5′‐ pentamethylferrocenyl moiety ( 10 ) was also prepared and metal complexes containing this ligand were found to undergo iron‐centered oxidations at lower potentials than analogous complexes supported by 2 (0.30–0.36 V vs. 0.56–0.62 V, respectively). Redox switching experiments using [Ru( 10 )Cl2(?CH‐o‐O‐iPrC6H4)] revealed that greater than 94 % of the initial catalytic activity was restored after an oxidation–reduction cycle.  相似文献   

3.
4.
The synthesis and characterization of a series of isocyanate‐ and isothiocyanate‐derived second generation Grubbs–Hoveyda‐type ruthenium–alkylidene complexes, that is, [Ru(N?C?O)2(IMesH2)(?CH‐2‐(2‐PrO)‐C6H4)] ( 1 ), [Ru(N?C?O)2(1,3‐dimesityl‐3,4,5,6‐tetrahydropyrimidin‐2‐ylidene)(=CH‐2‐(2‐PrO)‐C6H4)] ( 2 ), [Ru(N?C?S)2(IMesH2)(?CH‐2‐(2‐PrO)‐C6H4)] ( 3 ), and [Ru(N?C?S)2(1,3‐dimesityl‐3,4,5,6‐tetrahydropyrimidin‐2‐ylidene)(?CH‐2‐(2‐PrO)‐C6H4)] ( 4 ), and their activity in various metathesis reactions are described. Compounds 1 – 4 were prepared by reaction of the parent complexes [RuCl2(IMesH2)(?CH‐2‐(2‐PrO)C6H4)] ( 5 ) (IMesH2=1,3‐bis‐(2,4,6‐trimethylphenyl)‐4,5‐dihydroimidazol‐2‐ylidene) and [RuCl2(1,3‐dimesityl‐3,4,5,6‐tetrahydropyrimidin‐2‐ylidene)(?CH‐2‐(2‐PrO)‐C6H4)] ( 6 ) with silver cyanate and thiocyanate, respectively. The X‐ray structure of 1 was determined, confirming the isocyanate‐type bonding of the ligand. The isothiocyanate‐type bonding in 3 and 4 was unambiguously confirmed by IR and 13C NMR spectroscopy. The isocyanate‐derived complexes 1 and 2 were found to be excellent catalysts for the ring‐opening metathesis polymerization (ROMP) of cis‐cycloocta‐1,5‐diene (COD). Both 1 and 2 yielded poly(COD) with a trans‐content of about 80 %. First‐order kinetics with unprecedentedly high rate constants of polymerization (kp=0.068 and 0.26 s?1, respectively) were observed. Compounds 3 and 4 were also active initiators for the ROMP of COD, however, they generated poly(COD) with a cis‐content of 80 and 67 %, respectively. Complexes 1 and 2 also showed good catalytic activity in cross‐metathesis (CM) reactions. Finally, 1 – 4 were also found to be excellent catalysts for the regioselective cyclopolymerization of diethyl 2,2‐dipropargylmalonate (DEDPM), resulting in poly(DEDPM) almost entirely based on five‐membered repeat units, that is, cyclopent‐1‐ene‐1,2‐vinylenes.  相似文献   

5.
6.
7.
8.
9.
10.
11.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

12.
13.
14.
15.
The efficient construction of nitrogen‐containing organic compounds is a major challenge in chemical synthesis. Imines are one of the most important classes of electrophiles for this transformation. However, both the available imines and applicable nucleophiles for them are quite limited given the existing preparative methods. Described herein are imine precursors which generate reactive imines with a wide variety of substituents under mild basic conditions. This approach enables the construction of various nitrogen‐containing molecules which cannot be accessed by the traditional approach. The utility of the novel imine precursor was demonstrated in the asymmetric Mannich‐type reaction under phase‐transfer conditions.  相似文献   

16.
The synthesis of densly functionized α‐silyl‐β‐hydroxyl vinylsilanes via ruthenium‐catalyzed multicomponent reaction (MCR) is reported herein. Exceptionally high regio‐ and diastereoselectivity was achieved by employing an unprecedented hydrosilylation of bifunctional silyl‐propargyl boronates. The simple protocol, mild reaction conditions, and unique tolerability of this method make it a valuable tool for the synthesis of highly elaborated building blocks. The one‐pot synthesis of stereodefined olefins, the generation of a valuable cyclohexene building block through a four‐component MCR, and further functionalization in an abundance of diastereoselective reactions is disclosed herein.  相似文献   

17.
18.
19.
A series of four unprecedented heterometallic metallagermsesquioxanes were synthesized. Their cage‐like architectures have a unique type of molecular topology consisting of the hexairon oxo {Fe6O19} core surrounded in a triangular manner by three cyclic germoxanolates [PhGe(O)O]5. This structural organization induces antiferromagnetic interactions between the FeIII ions through the oxygen atoms. Evaluated for this first time in catalysis, these compounds showed a high catalytic activity in the oxidation of alkanes and the oxidative formation of benzamides from alcohols.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号