共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dr. Lakshmanan Sandhiya Prof. Dr. Hendrik Zipse 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(40):14060-14067
For the (aut)oxidation of toluene to benzyl hydroperoxide, benzyl alcohol, benzaldehyde, and benzoic acid, the thermochemical profiles for various radical‐generating reactions have been compared. A key intermediate in all of these reactions is benzyl hydroperoxide, the heat of formation of which has been estimated by using results from CBS‐QB3, G4, and G3B3 calculations. Homolytic O?O bond cleavage in this hydroperoxide is strongly endothermic and thus unlikely to contribute significantly to initiation processes. In terms of reaction enthalpies the most favorable initiation process involves bimolecular reaction of benzyl hydroperoxide to yield hydroxy and benzyloxy radicals along with water and benzaldehyde. The reaction enthalpy and free energy of this process is significantly more favorable than those for the unimolecular dissociation of known radical initiators, such as dibenzoylperoxide or dibenzylhyponitrite. 相似文献
3.
4.
Dr. Lakshmanan Sandhiya Prof. Dr. Hendrik Zipse 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(36):8604-8611
The reaction profiles for the uni- and bimolecular decomposition of benzyl hydroperoxide have been studied in the context of initiation reactions for the (aut)oxidation of hydrocarbons. The unimolecular dissociation of benzyl hydroperoxide was found to proceed through the formation of a hydrogen-bonded radical-pair minimum located +181 kJ mol−1 above the hydroperoxide substrate and around 15 kJ mol−1 below the separated radical products. The reaction of toluene with benzyl hydroperoxide proceeds such that O−O bond homolysis is coupled with a C−H bond abstraction event in a single kinetic step. The enthalpic barrier of this molecule-induced radical formation (MIRF) process is significantly lower than that of the unimolecular O−O bond cleavage. The same type of reaction is also possible in the self-reaction between two benzyl hydroperoxide molecules forming benzyloxyl and hydroxyl radical pairs along with benzaldehyde and water as co-products. In the product complexes formed in these MIRF reactions, both radicals connect to a centrally placed water molecule through hydrogen-bonding interactions. 相似文献
5.
6.
7.
8.
9.
10.
M. Sc. Małgorzata Krasowska Prof. Holger F. Bettinger 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(30):10661-10670
New low‐energy pathways for the reaction between substituted boriranes and borirenes with unsaturated hydrocarbons (ethyne or ethene) were discovered using density functional and coupled cluster theory. The interaction between the π bond of the hydrocarbon and the empty p orbital of the boron center leads to ring expansion of the three‐membered to a five‐membered boron heterocycle. The reactions are strongly exothermic and have low or even no barriers. They involve intermediates with a pentacoordinate boron center with two hydrocarbon molecules coordinating to boron akin to metal‐olefin complexes. These borylene complexes are shallow minima on the potential energy surfaces. But significantly higher barriers for ring formation are computed for 1,5‐cyclooctadiene and dibenzocyclooctatetraene complexes of borylenes, making these complexes likely detectable under appropriate experimental conditions. Our computational findings have implications for the interpretation of trapping experiments of thermally generated small borylenes with excess of small π systems. Because of very low barriers for reactions of three‐membered boron heterocycles with π systems and the at least locally large excess of the latter under such conditions, formation of five‐membered boron heterocycles should be considered. 相似文献
11.
Dr. Indranil Chatterjee Dr. Zheng‐Wang Qu Prof. Dr. Stefan Grimme Prof. Dr. Martin Oestreich 《Angewandte Chemie (International ed. in English)》2015,54(41):12158-12162
A transition‐metal‐free transfer hydrogenation of 1,1‐disubstituted alkenes with cyclohexa‐1,4‐dienes as the formal source of dihydrogen is reported. The process is initiated by B(C6F5)3‐mediated hydride abstraction from the dihydrogen surrogate, forming a Brønsted acidic Wheland complex and [HB(C6F5)3]?. A sequence of proton and hydride transfers onto the alkene substrate then yields the alkane. Although several carbenium ion intermediates are involved, competing reaction channels, such as dihydrogen release and cationic dimerization of reactants, are largely suppressed by the use of a cyclohexa‐1,4‐diene with methyl groups at the C1 and C5 as well as at the C3 position, the site of hydride abstraction. The alkene concentration is another crucial factor. The various reaction pathways were computationally analyzed, leading to a mechanistic picture that is in full agreement with the experimental observations. 相似文献
12.
The configurations, stability and electronic structures of a new class of boron sheet and related boron nanotubes are predicted within the framework of density functional theory. This boron sheet is sparser than those of recent proposals. Our theoretic results show that the stable boron sheet remains flat and is metallic. There are bands similar to the π‐bands in graphite near the Fermi level. Stable nanotubes with various diameters and chiral vectors can be rolled from the sheet. Within our study, only the thin (8, 0) nanotube with a band gap of 0.44 eV is semiconducting, while all the other thicker boron nanotubes are metallic, independent of their chirality. It indicates the possibility, in the design of nanodevices, to control the electronic transport properties of the boron nanotube through the diameter. 相似文献
13.
On differences between hydrogen bonding and improper blue-shifting hydrogen bonding. 总被引:2,自引:0,他引:2
Twenty two hydrogen-bonded and improper blue-shifting hydrogen-bonded complexes were studied by means of the HF, MP2 and B3LYP methods using the 6-31G(d,p) and 6--311 ++G(d,p) basis sets. In contrast to the standard H bonding, the origin of the improper blue-shifting H bonding is still not fully understood. Contrary to a frequently presented idea, the electric field of the proton acceptor cannot solely explain the different behavior of the H-bonded and improper blue-shifting H-bonded complexes. Compression of the hydrogen bond due to different attractive forces-dispersion or electrostatics--makes an important contribution as well. The symmetry-adapted perturbation theory (SAPT) has been utilized to decompose the total interaction energy into physically meaningful contributions. In the red-shifting complexes, the induction energy is mostly larger than the dispersion energy while, in the case of blue-shifting complexes, the situation is opposite. Dispersion as an attractive force increases the blue shift in the blue-shifting complexes as it compresses the H bond and, therefore, it increases the Pauli repulsion. On the other hand, dispersion in the red-shifting complexes increases their red shift. 相似文献
14.
A computational study of substituent effects on the stability and geometry of carbazole‐pyridine complexes 下载免费PDF全文
Eric W. Ziegler James Clayton Baum Alan B. Brown Gail S. Blaustein 《International journal of quantum chemistry》2017,117(4)
Hydrogen bonding between carbazole and pyridine is known to quench fluorescence emission of carbazole. Three carbazolopyridinophanes—compounds composed of carbazole and pyridine subunits such that an intramolecular hydrogen bond may exist between them—have been pursued as reversible fluorescent sensors that detect given analytes through fluorescence restoration. However, these sensors exhibit background fluorescence believed to be related to the proportion of non‐hydrogen‐bonded conformers present. In this computational investigation, the potential energy surfaces of various hydrogen‐bonded carbazole:pyridine complexes are investigated using density functional theory with the intent of explaining the observed background fluorescence for the carbazolopyridinophanes. The results indicate carbazolopyridinophane conformers most resembling the geometry of their corresponding free carbazole:pyridine complexes exhibit the least background fluorescence. 相似文献
15.
16.
Díaz-Oltra S Carda M Murga J Falomir E Marco JA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(30):9240-9254
Both matched and mismatched diastereoselection have been observed in aldol reactions of a boron enolate of a protected L-erythrulose derivative with several chiral alpha-fluoro and alpha-amino aldehydes. Strict adherence to the Felkin-Anh model for the respective transition structures does not account satisfactorily for all the observed results, as previously observed in the case of alpha-oxygenated aldehydes. In some cases, only the Cornforth model provides a good explanation. The factors that influence this dichotomy are discussed and a general mechanistic model is proposed for aldol reactions with alpha-heteroatom-substituted aldehydes. Additional support for the model was obtained from density functional calculations. 相似文献
17.
Doerksen RJ Chen B Liu D Tew GN Degrado WF Klein ML 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(20):5008-5016
The role of an ortho-alkylthioether group in controlling the conformation around the ring-N bonds of meta-connected arylamide oligomers is studied. Density functional theory (DFT) geometries of model compounds, including acetanilide, an ether acetanilide, and a thioether acetanilide, and their corresponding diamides, show that for either monoamide or diamide the alkyl side chain of the thioether should be perpendicular to the aryl plane, whereas for the ether monoamide, the alkyl side chain is in the aryl plane. DFT ring-N torsional potentials and constrained geometries of the model compounds demonstrate that carbonyl-S repulsion leads to a high torsional barrier and that intramolecular N-H...S and C-H...O hydrogen bonds and ring-amide conjugation lead to N-H having a preferred orientation in the benzene plane pointing towards S. The N-H bond lengthens and the ortho-ring C-H bond shortens in a regular pattern in the approach to the preferred orientation. Calculated IR frequencies for the N-H stretch show a clear red shift between model compounds without and with the thioether side chain. 相似文献
18.
19.
Jelena Jenter Dipl.‐Chem. Peter W. Roesky Prof. Dr. Noureddine Ajellal Sophie M. Guillaume Dr. Nicolas Susperregui Laurent Maron Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(15):4629-4638
Rare‐earth‐metal borohydrides are known to be efficient catalysts for the polymerization of apolar and polar monomers. The bis‐borohydrides [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) have been synthesized by two different synthetic routes. The lanthanum and the lutetium complexes were prepared from [Ln(BH4)3(THF)3] and K{CH(PPh2NSiMe3)2}, whereas the yttrium analogue was obtained from in situ prepared [{CH(PPh2NSiMe3)2}YCl2]2 and NaBH4. All new compounds were characterized by standard analytical/spectroscopic techniques, and the solid‐state structures were established by single‐crystal X‐ray diffraction. The ring‐opening polymerization (ROP) of ε‐caprolactone initiated by [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) was studied. At 0 °C the molar mass distributions determined were the narrowest values (M?w/M?n=1.06–1.11) ever obtained for the ROP of ε‐caprolactone initiated by rare‐earth‐metal borohydride species. DFT investigations of the reaction mechanism indicate that this type of complex reacts in an unprecedented manner with the first B? H activation being achieved within two steps. This particularity has been attributed to the metallic fragment based on the natural bond order analysis. 相似文献