共查询到20条相似文献,搜索用时 15 毫秒
1.
齐聚噻吩及其衍生物具有良好的环境稳定性和优异的光电性能,是一类具有良好发展前景的有机功能材料。本文综述了近年来齐聚噻吩及其衍生物的发展状况,简述了其主要合成方法;根据结构将其分为两大类:一类是不含极性基团或仅含弱极性基团的齐聚噻吩衍生物,另一类是给体-受体型齐聚噻吩衍生物,并讨论了它们作为有机光伏材料的应用。给体-受体型齐聚噻吩衍生物由于分子内的电荷传输作用,其光物理和电化学性能均优于不含极性基团的齐聚噻吩,该类材料在小分子光伏器件中具有最高的光电转换效率(>10%)。文章最后简要分析了影响光伏器件性能的主要因素。 相似文献
2.
In Hwan Jung Jinyoung Yu Eunjae Jeong Jinseck Kim Sooncheol Kwon Hoyoul Kong Kwanghee Lee Prof. Han Young Woo Prof. Hong‐Ku Shim Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(12):3743-3752
We have synthesized four types of cyclopentadithiophene (CDT)‐based low‐bandgap copolymers, poly[{4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl}‐alt‐(2,2′‐bithiazole‐5,5′‐diyl)] ( PehCDT‐BT ), poly[(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(2,2′‐bithiazole‐5,5′‐diyl)] ( PocCDT‐BT ), poly[{4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl}‐alt‐{2,5‐di(thiophen‐2‐yl)thiazolo[5,4‐d]thiazole‐5,5′‐diyl}] ( PehCDT‐TZ ), and poly[(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐{2,5‐di(thiophen‐2‐yl)thiazolo[5,4‐d]thiazole‐5,5′‐diyl}] ( PocCDT‐TZ ), for use in photovoltaic applications. The intramolecular charge‐transfer interaction between the electron‐sufficient CDT unit and electron‐deficient bithiazole (BT) or thiazolothiazole (TZ) units in the polymeric backbone induced a low bandgap and broad absorption that covered 300 nm to 700–800 nm. The optical bandgap was measured to be around 1.9 eV for PehCDT‐BT and PocCDT‐BT , and around 1.8 eV for PehCDT‐TZ and PocCDT‐TZ . Gel permeation chromatography showed that number‐average molecular weights ranged from 8000 to 14 000 g mol?1. Field‐effect mobility measurements showed hole mobility of 10?6–10?4 cm2 V?1 s?1 for the copolymers. The film morphology of the bulk heterojunction mixtures with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) was also examined by atomic force microscopy before and after heat treatment. When the polymers were blended with PCBM, PehCDT‐TZ exhibited the best performance with an open circuit voltage of 0.69 V, short‐circuit current of 7.14 mA cm?2, and power conversion efficiency of 2.23 % under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm?2). 相似文献
3.
Lee W Choi H Hwang S Kim JY Woo HY 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(9):2551-2558
A low-band-gap alternating copolymer, poly{5,6-bis(octyloxy)-4-(thiophen-2-yl)benzo[c]-1,2,5-thiadiazole} (PTBT), was synthesized and investigated for photovoltaic applications. PTBT showed a minimized torsion angle in its main backbone owing to the introduction of solubilizing octyloxy groups on the electron-poor benzothiadiazole unit, thereby resulting in pronounced intermolecular ordering and a deep level of the HOMO (-5.41 eV). By blending PTBT with [6,6]phenyl-C61-butyric acid methyl ester (PC(61)BM), highly promising performance was achieved with power-conversion efficiencies (PCEs) of 5.9 and 5.3% for the conventional and inverted devices, respectively, under air mass 1.5 global (AM 1.5G, 100 mW cm(-2)) illumination. The open-circuit voltage (V(OC) ≈ 0.85-0.87 V) is one of the highest values reported thus far for thiophene-based polymers (e.g., poly(3-hexylthiophene) V(OC) ≈ 0.6 V). The inverted device also achieved a remarkable PCE compared to other devices based on low-band-gap polymers. Ideal film morphology with bicontinuous percolation pathways was expected from the atomic force microscopy (AFM) images, space-charge-limited current (SCLC) mobility, and selected-area electron-diffraction (SAED) measurements. This molecular design strategy is useful for achieving simple, processable, and planar donor-acceptor (D-A)-type low-band-gap polymers with a deep HOMO for applications in photovoltaic cells. 相似文献
4.
Conjugated Oligothiophene Derivatives Based on Bithiophene with Unsaturated Bonds as Building Blocks for Solution‐Processed Bulk Heterojunction Organic Solar Cells 下载免费PDF全文
Dr. Chaohua Cui Yue Wu Dr. Man‐Sing Cheung Dr. Cheuk‐Lam Ho Dr. Qingchen Dong Prof. Dr. Zhenyang Lin Prof. Dr. Yongfang Li Prof. Dr. Wai‐Yeung Wong 《化学:亚洲杂志》2016,11(24):3557-3567
A new building block ATVTA that uses stiff carbon–carbon triple bonds (A) on 1,2‐di(2‐thienyl)‐ethene (TVT) has been developed. Oligothiophene derivatives S‐01 with a TVT unit, S‐02 with a 5,5′‐diethynyl‐2,2′‐dithienyl (AT2) unit and S‐03 with ATVTA were synthesized to compare their effects in a systematic study. Due to the better π‐conjugation extension of the TVT unit, S‐01 exhibits the most red‐shifted absorption profile among them, whereas S‐02 possesses the deepest HOMO level. While the HOMO level of S‐03 is down‐shifted by 0.02 eV relative to that of S‐01 , the alkyne linkages can effectively down‐shift the HOMO level. By replacing the terminal units of S‐03 with stronger electron acceptors, S‐04 and S‐05 exhibited broader absorption profiles and lower HOMO levels than those of S‐03 . Organic solar cells based on these molecules were fabricated and an S‐03 :PC60BM (1:1, w/w) based device afforded the highest Voc value of 0.96 V and a power conversion efficiency (PCE) of 2.19 %. 相似文献
5.
以对溴苯酚为原料,经碘丁烷的烷基化后,与硼酸三甲酯反应生成对丁氧基苯硼酸.环戊二噻吩经N-溴代丁二酰亚胺(NBS)的溴化和Vilsmeier-Haack反应,再与对丁氧基苯硼酸偶联、氰基乙酸缩合,生成目标化合物环戊二噻吩基光敏染料(L1).该化合物是一种以含氧基团为给体,环戊二噻吩作为共轭桥的有机染料,将其制备成有机染料敏化太阳能电池,在AM 1.5,100 mW/cm2的光强下,电池的单色光的光电转换效率(IPCE)值达到62%,开路电压(Voc)为535mV,短路电流密度(Jsc)为6.4mA·cm-2,填充因子(FF)为0.60,总光电转换效率为2.1%. 相似文献
6.
聚合物太阳能电池高效共轭聚合物给体和富勒烯受体光伏材料 总被引:1,自引:0,他引:1
聚合物太阳能电池(PSC)由共轭聚合物给体和富勒烯衍生物受体的共混膜(活性层)夹在ITO透明导电玻璃正极和低功函数金属负极之间所组成,具有制备过程简单、成本低、重量轻、可制备成柔性器件等突出优点,近年来成为国内外研究前沿和热点。当前研究的焦点是提高器件的光电能量转换效率,而提高效率的关键是高效共轭聚合物给体和富勒烯衍生... 相似文献
7.
Woochul Lee Nara Cho Jongchul Kwon Prof. Dr. Jaejung Ko Prof. Dr. Jong‐In Hong 《化学:亚洲杂志》2012,7(2):343-350
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value. 相似文献
8.
非富勒烯稠环电子受体因具有易调控的分子结构、宽且强的光谱吸收及较高的光电转换效率吸引了科研人员的广泛的研究兴趣。非富勒烯稠环电子受体分子的中心给电子单元一般为较大的共轭稠环平面结构,这类稠环结构通常是经过多步反应得到,包括合成成本高、难度大且产率低的关环反应过程。研究人员在分子中引入带有O、F、N、Se等杂原子单元, 利用分子内非共价键相互作用来锁定分子骨架得到类似稠环结构的非共价稠环电子受体材料,减少合成过程中关环反应的使用,使得合成更容易,成本更低;利用分子内的非共价相互作用可以增强分子平面性,拓展吸收光谱,降低材料的制备成本。综述了近年来利用分子内非共价键相互作用合成非富勒烯受体材料及其在有机太阳能电池中应用的研究进展, 并展望了其发展趋势和应用前景。 相似文献
9.
The Crucial Role of Chlorinated Thiophene Orientation in Conjugated Polymers for Photovoltaic Devices 下载免费PDF全文
Yanan Wu Dr. Cunbin An Lanlan Shi Liyan Yang Yunpeng Qin Dr. Ningning Liang Dr. Chang He Prof. Zhaohui Wang Prof. Jianhui Hou 《Angewandte Chemie (International ed. in English)》2018,57(39):12911-12915
Chlorinated conjugated polymers not only show great potential for the realization of highly efficient polymer solar cells (PSCs) but also have simple and high‐yield synthetic routes and low‐cost raw materials available for their preparation. However, the study of the structure–property relationship of chlorinated polymers is lagging. Now two chlorinated conjugated polymers, PCl(3)BDB‐T and PCl(4)BDB‐T are investigated. When the polymers were used to fabricate PSCs with the nonfullerene acceptor (IT‐4F), surprisingly, the PCl(3)BDB‐T:IT‐4F‐based device exhibited a negligible power conversion efficiency (PCE) of 0.18 %, while the PCl(4)BDB‐T:IT‐4F‐based device showed an outstanding PCE of 12.33 %. These results provide new insight for the rational design and synthesis of novel chlorinated polymer donors for further improving the photovoltaic efficiencies of PSCs. 相似文献
10.
Qunping Fan Ulises A. Mndez‐Romero Xia Guo Ergang Wang Maojie Zhang Yongfang Li 《化学:亚洲杂志》2019,14(18):3085-3095
Over the past decade, organic solar cells (OSCs) have achieved a dramatic boost in their power conversion efficiencies from about 6 % to over 16 %. In addition to developments in device engineering, innovative photovoltaic materials, especially fluorinated donors and acceptors, have become the dominant factor for improved device performance. This minireview highlights fluorinated photovoltaic materials that enable efficient OSCs. Impressive OSCs have been obtained by developing some important molds of fluorinated donor and acceptor systems. The molecular design strategy and the matching principle of fluorinated donors and acceptors in OSCs are discussed. Finally, a concise summary and outlook are presented for advances in fluorinated materials to realize the practical application of OSCs. 相似文献
11.
12.
Dr. Kamran T. Mahmudov Prof. Armando J. L. Pombeiro 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(46):16356-16398
Resonance‐assisted hydrogen bonding (RAHB), a concept introduced by Gilli and co‐workers in 1989, concerns a kind of intramolecular H‐bonding strengthened by a conjugated π‐system, usually in 6‐, 8‐, or 10‐membered rings. This Review highlights the involvement of RAHB as a driving force in the synthesis of organic, coordination, and organometallic compounds, as a handy tool in the activation of covalent bonds, and in starting moieties for synthetic transformations. The unique roles of RAHB in molecular recognition and switches, E/Z isomeric resolution, racemization and epimerization of amino acids and chiral amino alcohols, solvatochromism, liquid‐crystalline compounds, and in synthons for crystal engineering and polymer materials are also discussed. The Review can provide practical guidance for synthetic chemists that are interested in exploring and further developing RAHB‐assisted synthesis and design of materials. 相似文献
13.
14.
Prof. Qiang Peng Dr. Siew‐Lay Lim Ivy Hoi‐Ka Wong M. Sc. Jun Xu Dr. Zhi‐Kuan Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(38):12140-12151
A new series of 2,1,3‐benzothiadiazole (BT) acceptors with different conjugated aryl‐vinylene side chains have been designed and used to build efficient low‐bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2‐b:3,4‐b′]dithiophene and the resulting new BT derivatives, three two‐dimensional (2D)‐like donor (D)–acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl‐vinylene side chains. The copolymer with phenyl‐vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D–A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6‐31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]‐phenyl‐C61(C71)‐butyric acid‐methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100 mW cm?2. The results showed that the device based on the copolymer with phenyl‐vinylene side chains had the highest efficiency of 2.17 % with PC71BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll‐to‐roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT‐based copolymers can also be achieved by fine‐tuning the structures of the aryl‐vinylene side chains for photovoltaic application. 相似文献
15.
Taeyong Kim Hyunsik Yoon Hyung‐Jun Song Niko Haberkorn Younghyun Cho Seung Hyun Sung Chang Hee Lee Kookheon Char Patrick Theato 《Macromolecular rapid communications》2012,33(23):2035-2040
A strategy to fabricate nanostructured poly(3‐hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low‐pressure and low‐ temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS‐coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well‐ordered anodic aluminum oxide (AAO) as a template. Also, we provide a method to fabricate reversed nanostructures by exploiting the self‐replication of replica molds. The concept of the transfer method in low temperature with a flexible and reusable replica mold obtained from an AAO template will be a firm foundation for a low‐cost fabrication process of ordered OPVs. 相似文献
16.
Ping LIU Wan Zhang PAN Ming Sheng HUANG Wen Ji DENG 《中国化学快报》2006,17(7):903-906
Organic photovoltaic devices have attracted a great attention because of their light weight and processability, and the ease of material design on the molecular level. There are a number of reports on organic photovoltaic devices using a variety of dyes1-… 相似文献
17.
共轭聚合物发光和光伏材料研究进展 总被引:4,自引:1,他引:4
聚合物光电功能材料与器件因其广阔的应用前景,1990年以年来吸引了世界各国学术界的广泛关注和兴趣.聚合物光电子器件主要包括聚合物电致发光二极管、聚合物场效应晶体管和聚合物太阳能电池等,其使用的关键材料是共轭聚合物光电子材料,包括共轭聚合物发光材料、场效应晶体管材料和光伏材料等.本文主要对共轭聚合物电致发光材料和光伏材料的研究进展进行综述,介绍了这些聚合物材料的种类、结构和性质以及在聚合物电致发光器件和聚合物太阳能电池中的应用.并讨论了当前共轭聚合物光电子材料中的关键科学问题和今后的发展方向. 相似文献
18.
With the development of non-fullerene small-molecule acceptors, non-fullerene polymer solar cells (PSCs) have garnered increased attention due to their high performance. While photons are absorbed and converted to free charge carriers in the active layer, the donor and acceptor materials both play a critical role in determining the performance of PSCs. Among the various conjugated-polymer donor materials, polythiophene (PT) derivatives such as poly(3-hexylthiophene), have attracted considerable interest due to their high hole mobility and simple synthesis. However, there are limited studies on the applications of PT derivatives in non-fullerene PSCs. Fabrication of highly efficient non-fullerene PSCs utilizing PT derivatives as the donor is a challenging topic. In this study, a new PT derivative, poly[5, 5′-4, 4′-bis(2-butyloctylsulphanyl)-2, 2′-bithiophene-alt-5, 5′-4, 4′-difluoro-2, 2′-bithiophene] (PBSBT-2F), with alkylthio groups and fluorination was synthesized for use as the donor in non-fullerene PSC applications. The absorption spectra, electrochemical properties, molecular packing, and photovoltaic properties of PBSBT-2F were investigated and compared with those of poly(3-hexylthiophene) (P3HT). The polymer exhibited a wide bandgap of 1.82 eV, a deep highest occupied molecular orbital (HOMO) of -5.02 eV, and an ordered molecular packing structure. Following this observation, PSCs based on a blend of PBSBT-2F as the donor and 3, 9-bis(2-methylene-(3-(1, 1-dicyanomethylene)-indanone)-5, 5, 11, 11-tetrakis(4-hexylphenyl)-dithieno-[2, 3-d:2′, 3′-d′]-s-indaceno[1, 2-b:5, 6-b′]dithiophene (ITIC) as the acceptor were fabricated. The absorption spectra were collected and the energy levels were found to be well matched. These devices exhibited a power conversion efficiency (PCE) of 6.7% with an open-circuit voltage (VOC) of 0.75 V, a short-circuit current density (JSC) of 13.5 mA·cm-2, and a fill factor (FF) of 66.6%. These properties were superior to those of P3HT (1.2%) under the optimal conditions. This result indicates that PBSBT-2F is a promising donor material for non-fullerene PSCs. 相似文献
19.
Jong Hyeok Park Tae‐Woo Lee Byung‐Doo Chin Dong Hwan Wang O Ok Park 《Macromolecular rapid communications》2010,31(24):2095-2108
This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers.
20.
聚合物太阳电池由共轭聚合物给体和可溶性富勒烯衍生物受体的共混膜夹在ITO透光电极和金属电极之间所组成,具有结构简单、成本低、重量轻和可制成柔性器件等突出优点,近年来受到广泛关注。聚合物太阳电池中的给体和受体光伏材料是决定器件性能的关键。本文综述了共轭聚合物给体和富勒烯受体光伏材料的最新研究进展,对共轭聚合物受体材料和给体-受体双缆型共轭聚合物光伏材料的研究进展也进行了简要介绍。在共轭聚合物给体材料中对聚噻吩衍生物以及含有苯并噻二唑的窄带隙D-A共聚物进行了重点介绍。 相似文献