首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluoroalcohols show competitive formation of intra‐ and intermolecular hydrogen bonds, a property that may be crucial for the protein‐altering process in a fluoroalcohol/water solution. In this study, we examine the intra‐ and intermolecular interactions of 2‐fluoroethanol (FE) in its dimeric conformers by using rotational spectroscopy and ab initio calculations. Three pairs of homo‐ and heterochiral dimeric FE conformers are predicted to be local minima at the MP2/6‐311++G(d,p) level of theory. They are solely made of the slightly distorted most stable G+g?/G?g+ FE monomer units. Jet‐cooled rotational spectra of four out of the six predicted dimeric conformers were observed and unambiguously assigned for the first time. All four observed dimeric conformers have compact geometries in which the fluoromethyl group of the acceptor tilts towards the donor and ensures a large contact area. Experimentally, the insertion of the O? H group of one FE subunit into the intramolecular O? H???F bond of the other was found to lead to a higher stabilisation than the pure association through an intermolecular O? H???O? H link. The hetero‐ and homochiral combinations were observed to be preferred in the inserted and the associated dimeric conformers, respectively. The experimental rotational constants and the stability ordering are compared with the ab initio calculations at the MP2 level with the 6‐311++G(d,p) and aug‐cc‐pVTZ basis sets. The effects of fluorination and the competing inter‐ and intramolecular hydrogen bonds on the stability of the dimeric FE conformers are discussed.  相似文献   

2.
Self‐complementarity is a useful concept in supramolecular chemistry, molecular biology and polymeric systems. Two resorcinarene tetrabenzoxazines decorated with four oxalamide groups were synthesized and characterized. The oxalamide groups possessed self‐complementary hydrogen bonding sites between the carbonyls and amide groups. The self‐complementary nature of the oxalamide groups resulted in self‐included dimeric assemblies. The hydrogen bonding interactions within the tetrabenzoxazines gave rise to the formation of dimers, which were confirmed by single‐crystal X‐ray diffractions analysis and supported by NMR spectroscopy and mass spectrometry. The self‐included dimers were connected by numerous and strong intermolecular N?H???O and C?H???O hydrogen bonds supplemented with C?H???π interactions, forming one‐dimensional polymers, which were then further linked into three‐dimensional networks.  相似文献   

3.
Ab initio MP2/aug′‐cc‐pVTZ calculations are used to investigate the binary complexes H2XP:HF, the ternary complexes H2XP:(FH)2, and the quaternary complexes H2XP:(FH)3, for X=CH3, OH, H, CCH, F, Cl, NC, and CN. Hydrogen‐bonded (HB) binary complexes are formed between all H2XP molecules and FH, but only H2FP, H2ClP, and H2(NC)P form pnicogen‐bonded (ZB) complexes with FH. Ternary complexes with (FH)2 are stabilized by F?H???P and F?H???F hydrogen bonds and F???P pnicogen bonds, except for H2(CH3)P:(FH)2 and H3P:(FH)2, which do not have pnicogen bonds. All quaternary complexes H2XP:(FH)3 are stabilized by both F?H???P and F?H???F hydrogen bonds and P???F pnicogen bonds. Thus, (FH)2 with two exceptions, and (FH)3 can bridge the σ‐hole and the lone pair at P in these complexes. The binding energies of H2XP:(FH)3 complexes are significantly greater than the binding energies of H2XP:(FH)2 complexes, and nonadditivities are synergistic in both series. Charge transfer occurs across all intermolecular bonds from the lone‐pair donor atom to an antibonding σ* orbital of the acceptor molecule, and stabilizes these complexes. Charge‐transfer energies across the pnicogen bond correlate with the intermolecular P?F distance, while charge‐transfer energies across F?H???P and F?H???F hydrogen bonds correlate with the distance between the lone‐pair donor atom and the hydrogen‐bonded H atom. In binary and quaternary complexes, charge transfer energies also correlate with the distance between the electron‐donor atom and the hydrogen‐bonded F atom. EOM‐CCSD spin‐spin coupling constants 2hJ(F–P) across F?H???P hydrogen bonds, and 1pJ(P–F) across pnicogen bonds in binary, ternary, and quaternary complexes exhibit strong correlations with the corresponding intermolecular distances. Hydrogen bonds are better transmitters of F–P coupling data than pnicogen bonds, despite the longer F???P distances in F?H???P hydrogen bonds compared to P???F pnicogen bonds. There is a correlation between the two bond coupling constants 2hJ(F–F) in the quaternary complexes and the corresponding intermolecular distances, but not in the ternary complexes, a reflection of the distorted geometries of the bridging dimers in ternary complexes.  相似文献   

4.
A series of 2,5‐distyrylfuran derivatives bearing pentafluorophenyl‐ and cyanovinyl units have been synthesized for aggregation‐induced emission (AIE). The effect of the type and extent of the supramolecular connections on the AIE of the furan derivatives were examined and correlated with their X‐ray crystal structures. It was found that the simultaneous presence of cyano and perfluorophenyl units strongly enhances the fluorescence upon aggregation. Single‐crystal X‐ray diffraction analysis confirmed that C?H???F, F???F, C?H???nitrile, Ar???ArF (Ar=aryl, ArF=fluoroaryl), and nitrile???ArF intra‐ and intermolecular interactions drive the topology of the molecule and that solid‐state supramolecular contacts favor AIE of the furan derivatives.  相似文献   

5.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

6.
The present study combines both laser spectroscopy and ab initio calculations to investigate the intermolecular O? H???O hydrogen bonding of complexes of the tyrosine side chain model chromophore compounds phenol (PH) and para‐cresol (pCR) with H2O, MeOH, PH and pCR in the ground (S0) state as well as in the electronic excited (S1) state. All the experimental and computational findings suggest that the H‐bond strength increases in the S1 state and irrespective of the hydrogen bond acceptor used, the dispersion energy contribution to the total interaction energy is about 10–15 % higher in the S1 state compared to that in the S0 state. The alkyl‐substituted (methyl; +I effect) H‐bond acceptor forms a significantly stronger H bond both in the S0 and the S1 state compared to H2O, whereas the aryl‐substituted (phenyl; ?R effect) H‐bond donor shows a minute change in energy compared to H2O. The theoretical study emphasizes the significant role of the dispersive interactions in the case of the pCR and PH dimers, in particular the C? H???O and the C? H???π interactions between the donor and acceptor subunits in controlling the structure and the energetics of the aromatic dimers. The aromatic dimers do not follow the acid–base formalism, which states that the stronger the base, the more red‐shifted is the X? H stretching frequency, and consequently the stronger is the H‐bond strength. This is due to the significant contribution of the dispersion interaction to the total binding energy of these compounds.  相似文献   

7.
Dimethyl‐3,6‐dichloro‐2,5‐dihydroxyterephthalate (MCHT) is known to exist in three differently packed crystals having three different colors, namely yellow (Y), light yellow (LY), and white (W). Apart from the difference in their color, the molecules in the crystals also differ in their intramolecular O?H???O and O?H???Cl hydrogen bonds. Time‐dependent DFT calculations reveal the role of the various types of hydrogen bonds in controlling the color of the polymorphs. Mechanistic pathways that lead to such transformations in the crystal are elucidated by solid‐state dispersion‐corrected DFT studies. Relative stabilities of the various polymorphs rationalize the experimentally observed transformations between them. Calculations reveal that the minimum‐energy pathway for the conversion of the Y form to a W form is through stepwise disrotatory motion of the two ?OH groups through a hybrid intermediate having one intramolecular O?H???O and one O?H???Cl bond. The LY form is shown to exist on the higher‐energy pathway involving a concerted Y→W transformation.  相似文献   

8.
π‐Conjugated thienylene? phenylene oligomers with fluorinated and dialkoxylated phenylene fragments have been designed and prepared to understand the interactions in fragment orbitals, the influence of the substituents (F, OMe) on the HOMO–LUMO gap, and the role of intramolecular non‐covalent cumulative interactions in the construction of π‐conjugated nanostructures. Their strong conjugation was also evidenced in the gas phase by UV photoelectron spectroscopy and theoretical calculations. These results can be explained by the crucial role of the relative energetic positions of the π orbitals of the dimethoxyphenylene, which was used to model the dialkoxyphenylene entity, in determining the π/π* orbital levels of the fluorinated phenylene entity. Dialkoxyphenylenes raise the HOMO orbitals, whereas fluorinated phenylenes lower the LUMO orbitals in the oligomers. In addition, the presence of S???F and H???F interactions in the fluorinated phenylene? thienylene compounds add to the S???O interactions in the mixed targets and contribute to the full conjugation in the oligomer, inducing weak inter‐ring angles between the involved aromatic cycles. These results, which showed extended conjugation of the π system, were corroborated by a narrow HOMO–LUMO gap (according to DFT calculations) and by a relatively strong maximum wavelength (as obtained by TD‐DFT calculations and experimental UV/Vis measurements). The crystallographic data of two mixed thienylene? (fluorinated and dialkoxylated phenylene) five‐ring oligomers agree with the above results and show the formation of quasi‐planar conformations with non‐covalent S???O, H???F, and S???F interactions. These studies in the solid and gas phases show the relevance of associating dialkoxyphenylene and fluorinated phenylene fragments with thiophene to lead to oligomers with improved electronic delocalization for electronic or optoelectronic devices.  相似文献   

9.
An N‐heterocyclic carbene substituted by two expanded 9‐ethyl‐9‐fluorenyl groups was shown to bind an AuCl unit in an unusual manner, namely with the Au?X rod sitting out of the plane defined by the heterocyclic carbene unit. As shown by X‐ray studies and DFT calculations, the observed large pitch angle (21°) arises from an easy displacement of the gold(I) atom away from the carbene lone‐pair axis, combined with the stabilisation provided by weak CH???Au interactions involving aliphatic and aromatic H atoms of the NHC wingtips. Weak, intermolecular Cl???H bonds are likely to cooperate with the H???Au interactions to stabilise the out‐of‐plane conformation. A general belief until now was that tilt angles in NHC complexes arise mainly from steric effects within the first coordination sphere.  相似文献   

10.
11.
The notion of weak attractive ligand–polymer interactions is introduced, and its potential application, importance, and conceptual links with “cooperative” ligand–substrate interactions are discussed. Synthetic models of weak attractive ligand–polymer interactions are described, in which intramolecular weak C? H???F? C interactions (the existence of which remains contentious) have been detected by NMR spectroscopy and neutron and X‐ray diffraction experiments. These C? H???F? C interactions carry important implications for the design of catalysts for olefin polymerization, because they provide support for the practical feasibility of ortho‐F???Hβ ligand–polymer contacts proposed for living Group 4 fluorinated phenoxyimine catalysts. The notion of weak attractive noncovalent interactions between an “active” ligand and the growing polymer chain is a novel concept in polyolefin catalysis.  相似文献   

12.
The total experimental electron density rho(r), its Laplacian inverted delta(2)rho(r), the molecular dipole moment, the electrostatic potential phi(r), and the intermolecular interaction energies have been obtained from an extensive set of single-crystal X-ray diffracted intensities, collected at T = 70(1) K, for the fungal metabolite austdiol (1). The experimental results have been compared with theoretical densities from DFT calculations on the isolated molecule and with fully periodic calculations. The crystal structure of (1) consists of zigzag ribbons extended along one cell axis and formed by molecules connected by both OH...O and CH...O interactions, while in a perpendicular direction, adjacent molecules are linked by short CH...O intermolecular contacts. An extensive, quantitative study of all the intra- and intermolecular H...O interactions, based not only on geometrical criteria, but also on the topological analysis of rho(r), as well as on the evaluation of the pertinent energetics, allowed us (i) to assess the mutual role of OH...O and CH...O interactions in determining molecular conformation and crystal packing; (ii) to identify those CH...O contacts which are true hydrogen bonds (HBs); (iii) to determine the relative hydrogen bond strengths. An experimental, quantitative evidence is given that CH...O HBs are very similar to the conventional OH...O HBs, albeit generally weaker. The comparison between experimental and theoretical electric dipole moments indicates that a noticeable charge rearrangement occurs upon crystallization and shows the effects of the mutual cooperation of HBs in the crystal. The total intermolecular interaction energies and the electrostatic energy contribution obtained through different theoretical methods are reported and compared with the experimental results. It is found that the new approach proposed by Spackman, based on the use of the promolecular charge density to approximate the penetration contribution to intermolecular electrostatic energies, predicts the correct relative electrostatic interaction energies in most of the cases.  相似文献   

13.
4‐Fluorinated levoglucosans were synthesised to test if OH???F H‐bonds are feasible even when the O???F distance is increased. The fluorinated 1,6‐anhydro‐β‐D ‐glucopyranoses were synthesised from 1,6 : 3,4‐dianhydro‐β‐D ‐galactopyranose ( 8 ). Treatment of 8 with KHF2 and KF gave 43% of 4‐deoxy‐4‐fluorolevoglucosan ( 9 ), which was transformed into the 3‐O‐protected derivatives 13 by silylation and 15 by silylation, acetylation, and desilylation. 4‐Deoxy‐4‐methyllevoglucosan ( 19 ) and 4‐deoxylevoglucosan ( 21 ) were prepared as reference compounds that can only form a bivalent H‐bond from HO? C(2) to O? C(5). They were synthesised from the iPr3Si‐protected derivative of 8 . Intramolecular bifurcated H‐bonds from HO? C(2) to F? C(4) and O? C(5) of the 4‐fluorinated levoglucosans in CDCl3 solution are evidenced by the 1H‐NMR scalar couplings h1J(F,OH) and 3J(H,OH). The OH???F H‐bond over an O???F distance of ca. 3.0 Å is thus formed in apolar solvents, at least when favoured by the simultaneous formation of an OH???O H‐bond.  相似文献   

14.
The parallel interactions of non‐coordinated and coordinated water molecules with an aromatic ring were studied by analyzing data in the Cambridge structural database (CSD) and by using quantum chemical calculations. The CSD data show that water/aromatic contacts prefer parallel to OH/π interactions, which indicates the importance of parallel interactions. The results reveal the influence of water coordination to a metal ion; the interactions of aqua complexes are stronger. Coordinated water molecules prefer a parallel‐down orientation in which one O?H bond is parallel to the aromatic ring, whereas the other O?H bond points to the plane of the ring. The interactions of aqua complexes with parallel‐down water/benzene orientation are as strong as the much better known OH/π orientations. The strongest calculated interaction energy is ?14.89 kcal mol?1. The large number of parallel contacts in crystal structures and the quite strong interactions indicate the importance of parallel orientation in water/benzene interactions.  相似文献   

15.
Charge transport in organic semiconductors is strongly dependent on their molecular packing modes in the solid state. Therefore, understanding the relationship between molecular packing and charge transport is imperative, both experimentally and theoretically. However, so far, the fundamental effects of solid‐state packing and molecular interactions (e.g. N? H ??? π) on charge transport need further elucidation. Herein, indolo[3,2‐b]carbazole (ICZ) and a derivative thereof are used as examples to approach this scientific target. An interesting insight obtained thereby is that N? H ??? π interactions among ICZ molecules facilitate charge transport for higher mobility. Subtle changes in the of N? H ??? π interactions can significantly influence both the molecular packing and the charge‐transport properties. Therefore, a method for exploiting intermolecular N? H ??? π interactions would yield novel molecular systems with designable characteristics.  相似文献   

16.
The treatment of [AuCl(SMe2)] with an equimolar amount of NaO5NCS2 (O5NCS2=(aza‐[18]crown‐6)dithiocarbamate) in CH3CN gave [Au2(O5NCS2)2] ? 2 CH3CN ( 2? 2 CH3CN), and its crystal structure displays a dinuclear gold(I)‐azacrown ether ring and an intermolecular gold(I) ??? gold(I) contact of 2.8355(3) Å in crystal lattices. It is noted that two other single crystals of 2 ?tert‐butylbenzene?H2O and 2? 0.5 m‐xylene can be successfully obtained from a single‐crystal‐to‐single‐crystal (SCSC) transformation process by immersing single crystals of 2? 2 CH3CN in the respective solvents, and both also show intermolecular gold(I) ??? gold(I) contacts of 2.9420(5) and 2.890(2)–2.902(2) Å, respectively. Significantly, the emissions of all three 2 ?solvates are well correlated with their respective intermolecular gold(I) ??? gold(I) contacts, where such contacts increase with 2? 2 CH3CN (2.8355(3) Å)< 2? 0.5 m‐xylene (2.890(2)–2.902(2) Å)< 2? tert‐butylbenzene?H2O (2.9420(5) Å), and their emission energies increase with 2? 2 CH3CN (602 nm)< 2? 0.5 m‐xylene (583 nm)< 2? tert‐butylbenzene?H2O (546 nm) as well. In this regard, we further examine the solvochromic luminescence for some other aromatics, and finally their emissions are within 546–602 nm. Obviously, the above results are mostly ascribed to the occurrence of intermolecular gold(I) ??? gold(I) contacts in 2 ?solvates, which are induced by the presence of various solvates in the solid state, as a key role to be responsible for their solvochromic luminescence.  相似文献   

17.
18.
Two examples of core‐modified 36π doubly fused octaphyrins that undergo a conformational change from a twisted figure‐eight to an open‐extended structure induced by protonation are reported. Syntheses of the two octaphyrins (in which Ar=mesityl or tolyl) were achieved by a simple acid‐catalyzed condensation of dipyrrane unit containing an electron‐rich, rigid dithienothiophene (DTT) core with pentafluorobenzaldehyde followed by oxidation with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ). The single‐crystal X‐ray structure of the octaphyrin (in which Ar=mesityl) shows a figure‐eight twisted conformation of the expanded porphyrin skeleton with two DTT moieties oriented in a staggered conformation with a π‐cloud distance of 3.7 Å. Spectroscopic and quantum mechanical calculations reveal that both octaphyrins conform to a [4n]π nonaromatic electronic structure. Protonation of the pyrrole nitrogen atoms of the octaphyrins results in dramatic structural change, which led to 1) a large redshift and sharpening of absorption bands in electronic absorption spectrum, 2) a large change in chemical shift of pyrrole β‐CH and ? NH protons in the 1H NMR spectrum, 3) a small increase in singlet lifetimes, and 4) a moderate increase in two‐photon absorption cross‐section values. Furthermore, nucleus‐independent chemical shift (NICS) values calculated at various geometrical positions show positive values and anisotropy‐induced current density (AICD) plots indicate paratropic ring‐currents for the diprotonated form of the octaphyrin (in which Ar=tolyl); the single‐crystal X‐ray structure of the diprotonated form of the octaphyrin shows an extended structure in which one of the pyrrole ring of each dipyrrin subunit undergoes a 180 ° ring‐flip. Four trifluoroacetic acid (TFA) molecules are bound above and below the molecular plane defined by meso‐carbon atoms and are held by N? H ??? O, N? H ??? F, and C? H ??? F intermolecular hydrogen‐bonding interactions. The extended‐open structure upon protonation allows π‐delocalization and the electronic structure conforms to a [4n]π Hückel antiaromatic in the diprotonated state.  相似文献   

19.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   

20.
Recent experimental studies on the Watson–Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high‐level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two N? H???O hydrogen bonds separated by one N? H???N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the bases and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non‐natural bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号