首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of the Alkali Metal Tetraphenylborates with Macrocyclic Crown Ethers Alkali metal tetraphenylborates, MB(C6H5)4 (M = Li to Cs), react in tetrahydrofuran with macrocyclic crown ethers to give complexes of the general formula MB(C6H5)4(crown)m(THF)n. Suitable single crystals for X‐ray structure analysis were grown from a solvent mixture of tetrahydrofuran and n‐hexane. The salt like complexes [Li(12‐crown‐4)(thf)][B(C6H5)4] ( 1 ), [Na(15‐crown‐5)(thf)][B(C6H5)4] ( 2 ), and [Cs(18‐crown‐6)2][B(C6H5)4] · THF ( 6 ), the mononuclear molecular complexes [KB(C6H5)4(18‐crown‐6)(thf)] ( 3 ), [RbB(C6H5)4(18‐crown‐6)] ( 4 ), and [CsB(C6H5)4(18‐crown‐6)] · THF ( 5 ), and the compound [CsB(C6H5)4(18‐crown‐6)]2[Cs(18‐crown‐6)2][B(C6H5)4] ( 7 ), which contains a binuclear molecule ([CsB(C6H5)4(18‐crown‐6)]2) beside a [Cs(18‐crown‐6)2]+ cation and a [B(C6H5)4]? anion, are described. All compounds are charactarized by infrared spectra, elemental analysis, NMR‐spectroscopy, and X‐ray single crystal structure analysis.  相似文献   

2.
Structures of Polar Magnesium Organyls: Synthesis and Structure of Base Adducts of Bis(cyclopentadienyl)magnesium Eight donor‐acceptor complexes of bis(cyclopentadienyl)magnesium ( 1 ) with N‐ and O‐donor Lewis bases have been synthesized and characterized by X‐ray structure analysis. With acetonitrile, dimethoxyethane, diethyleneglycoldimethylether, dioxane, and tetramethylethylenediamine simple 1:1 adducts are formed ( 2 – 6 ). In some cases a change of the hapticity of one cyclopentadienylring from η5 to η2 or η1 is observed ( 4 – 6 ). In the adduct with pentamethyldiethylenetriamine ( 7 ) one C5H5‐ring is removed from the magnesium atom forming the cation [Mg(C5H5)(PMDTA)]+ and an uncoordinated five‐ring anion. With the crown ether 15‐crown‐5 the two ionic Mg compounds 8 and 9 are formed which have a [Mg(15‐crown‐5)L2]2+‐cation [L = pyridine, THF] and two uncoordinated cyclopentadienyl anions. Cyclopentadienyl‐methyl‐magnesium reacts with 15‐crown‐5 to the salt [Mg(CH3)(15‐crown‐5)]+ C5H5? ( 10 ) which has also a free cyclopentadienyl anion.  相似文献   

3.
The reaction of propane‐1,3‐diamine hydrochloride, 18‐crown‐6 and zinc(II) chloride in methanol solution yields the title complex salt [systematic name: propane‐1,3‐diaminium tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1)], (C3H12N2)[ZnCl4]·C12H24O6, with an unusual supramolecular structure. The diprotonated propane‐1,3‐diaminium cation forms an unexpected 1:1 supramolecular rotator–stator complex with the crown ether, viz. [C3H12N2(18‐crown‐6)]2+, in which one of the –NH3+ substituents nests in the crown and interacts through N—H...O hydrogen bonding. The other –NH3+ group interacts with the [ZnCl4]2− anion via N—H...Cl hydrogen bonding, forming cation–crown–anion ribbons parallel to [010].  相似文献   

4.
The novel PtII–dibenzo‐18‐crown‐6 (DB18C6) title complex, μ‐[tetrakis­(thio­cyanato‐S)­platinum(II)]‐N:N′‐bis{[2,5,8,­15,18,21‐hexa­oxa­tri­cyclo­[20.4.0.19,14]­hexa­cosa‐1(22),9(14),10,12,23,25‐hexaene‐κ6O]­potassium(I)}, [K(C20H24O6)]2[Pt(SCN)4], has been isolated and characterized by X‐ray diffraction analysis. The structure analysis shows that the complex displays a quasi‐one‐dimensional infinite chain of two [K(DB18C6)]+ complex cations and a [Pt(SCN)4]2? anion, bridged by K+?π interactions between adjacent [K(DB18C6)]+ units.  相似文献   

5.
Aromatic ketones are enantioseletively hydrogenated in alcohols containing [RuX{(S,S)‐Tsdpen}(η6p‐cymene)] (Tsdpen=TsNCH(C6H5)CH(C6H5)NH2; X=TfO, Cl) as precatalysts. The corresponding Ru hydride (X=H) acts as a reducing species. The solution structures and complete spectral assignment of these complexes have been determined using 2D NMR (1H‐1H DQF‐COSY, 1H‐13C HMQC, 1H‐15N HSQC, and 1H‐19F HOESY). Depending on the nature of the solvents and conditions, the precatalysts exist as a covalently bound complex, tight ion pair of [Ru+(Tsdpen)(cymene)] and X?, solvent‐separated ion pair, or discrete free ions. Solvent effects on the NH2 chemical shifts of the Ru complexes and the hydrodynamic radius and volume of the Ru+ and TfO? ions elucidate the process of precatalyst activation for hydrogenation. Most notably, the Ru triflate possessing a high ionizability, substantiated by cyclic voltammetry, exists in alcoholic solvents largely as a solvent‐separated ion pair and/or free ions. Accordingly, its diffusion‐derived data in CD3OD reflect the independent motion of [Ru+(Tsdpen)(cymene)] and TfO?. In CDCl3, the complex largely retains the covalent structure showing similar diffusion data for the cation and anion. The Ru triflate and chloride show similar but distinct solution behavior in various solvents. Conductivity measurements and catalytic behavior demonstrate that both complexes ionize in CH3OH to generate a common [Ru+(Tsdpen)(cymene)] and X?, although the extent is significantly greater for X=TfO?. The activation of [RuX(Tsdpen)(cymene)] during catalytic hydrogenation in alcoholic solvent occurs by simple ionization to generate [Ru+(Tsdpen)(cymene)]. The catalytic activity is thus significantly influenced by the reaction conditions.  相似文献   

6.
[K(18C6)]2[Pd2Cl6] ( 1 ) (18C6 = 18‐crown‐6) was found to react with pyridines in a strictly stoichiometric ratio 1 : 2 in methylene chloride or nitromethane to yield trichloropalladate(II) complexes [K(18C6)][PdCl3(py*)] (py* = py, 2a ; 4‐Bnpy, 2b ; 4‐tBupy, 2c ; Bn = benzyl; tBu = tert‐butyl). The reaction of 1 with pyrimidine (pyrm) in a 1 : 1 ratio led to the formation of the pyrimidine‐bridged bis(trichloropalladate) complex [K(18C6)]2[(PdCl3)2(μ‐pyrm)] ( 3 ). The identities of the complexes were confirmed by means of NMR spectroscopy (1H, 13C) and microanalysis. The X‐ray structure analysis of 2a reveals square‐planar coordination of the Pd atom in the [PdCl3(py)]? anion. The pyridine plane forms with the complex plane an angle of 55.8(2)°. In the [K(18C6)]+ cation the K+ lies outside the mean plane of the crown ether (defined by the 6 O atoms) by 0.816(1) Å. There are tight K···Cl contacts between the cation and the anion (K···Cl1 3.340(2) Å, K···Cl2 3.166(2) Å). To gain an insight into the conformation of the [PdCl3(py)]? anion, DFT calculations were performed showing that the equilibrium structure ( 6eq ) has an angle between the pyridine ligand and the complex plane of 35.3°. Rotation of the pyridine ligand around the Pd–N vector exhibited two transition states where the pyridine ligand lies either in the complex plane ( 6TS pla, 0.87 kcal/mol above 6eq ) or is perpendicular to it ( 6TS per, 3.76 kcal/mol above 6eq ). Based on an energy decomposition analysis the conformation of the anion is discussed in terms of repulsive steric interactions and of stabilizing σ and π orbital interactions between the PdCl3? moiety and the pyridine ligand.  相似文献   

7.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

8.
Pulsed gradient spin‐echo (PGSE) diffusion characteristics for a) the new [brucinium][X] salts 6 a – f [ a : X=BF4?; b : X=PF6?; c : X=MeSO3?, d : X=CF3SO3?; e : X=BArF?; f : X=PtCl3(C2H4)?], b) 4‐tert‐butyl‐N‐benzyl analogue, 7 and c) the aryl carbocations (p‐R‐C6H4)2CH 9 a (R=CH3O) and 9 b (R=(CH3)2N), (p‐CH3O‐C6H4)xCPh3?x+ 10 a – c (x=1–3, respectively) and (p‐R‐C6H4)3C+ 11 (R=(CH3)2N) and 12 (R=H) all in several different solvents, are reported. The solvent dependence suggests strong ion pairing in CDCl3, intermediate ion pairing in CD2Cl2 and little ion pairing in [D6]acetone. 1H, 19F HOESY NMR spectra (HOESY: heteronuclear Overhauser effect spectroscopy) for 6 and 7 reveal a specific approach of the anion with respect to the brucinium cation plus subtle changes, which are related to the anion itself. Further, for carbocations 9 – 12 , (all as BF4? salts) based on the NOE results, one finds marked changes in the relative positions of the BF4? anion. In these aryl cationic species the anion can be located either a) very close to the carbonium ion carbon b) in an intermediate position or c) proximate to the N or O atom of the p‐substituent and remote from the formally positive C atom. This represents the first example of such a positional dependence of an anion on the structure of the carbocation. DFT calculations support the experimental HOESY results. The solid‐state structures for 6 c and the novel Zeise's salt derivative, [brucinium][PtCl3(C2H4)], 6 f , are reported. Analysis of 195Pt NMR and other NMR measurements suggest that the η2‐C2H4 bonding to the platinum centre in 6 f is very similar to that found in K[PtCl3(C2H4)]. Field dependent T1 measurements on [brucinium][PtCl3(C2H4)] and K[PtCl3(C2H4)], are reported and suggested to be useful in recognizing aggregation effects.  相似文献   

9.
Using [Ga(C6H5F)2]+[Al(ORF)4]?( 1 ) (RF=C(CF3)3) as starting material, we isolated bis‐ and tris‐η6‐coordinated gallium(I) arene complex salts of p‐xylene (1,4‐Me2C6H4), hexamethylbenzene (C6Me6), diphenylethane (PhC2H4Ph), and m‐terphenyl (1,3‐Ph2C6H4): [Ga(1,4‐Me2C6H4)2.5]+ ( 2+ ), [Ga(C6Me6)2]+ ( 3+ ), [Ga(PhC2H4Ph)]+ ( 4+ ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+ ( 52+ ). 4+ is the first structurally characterized ansa‐like bent sandwich chelate of univalent gallium and 52+ the first binuclear gallium(I) complex without a Ga?Ga bond. Beyond confirming the structural findings by multinuclear NMR spectroscopic investigations and density functional calculations (RI‐BP86/SV(P) level), [Ga(PhC2H4Ph)]+[Al(ORF)4]?( 4 ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+{[Al(ORF)4] ?}2 ( 5 ), featuring ansa‐arene ligands, were tested as catalysts for the synthesis of highly reactive polyisobutylene (HR‐PIB). In comparison to the recently published 1 and the [Ga(1,3,5‐Me3C6H3)2]+[Al(ORF)4]? salt ( 6 ) (1,3,5‐Me3C6H3=mesitylene), 4 and 5 gave slightly reduced reactivities. This allowed for favorably increased polymerization temperatures of up to +15 °C, while yielding HR‐PIB with high contents of terminal olefinic double bonds (α‐contents=84–93 %), low molecular weights (Mn=1000–3000 g mol?1) and good monomer conversions (up to 83 % in two hours). While the chelate complexes delivered more favorable results than 1 and 6 , the reaction kinetics resembled and thus concurred with the recently proposed coordinative polymerization mechanism.  相似文献   

10.
The crystal structures of two crown‐ether‐coordinated caesium halogen salt hydrates, namely di‐μ‐bromido‐bis[aqua(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium(I)] dihydrate, [Cs2Br2(C12H24O6)2(H2O)2]·2H2O, (I), and poly[[diaquadi‐μ‐chlorido‐μ‐(1,4,7,10,13,16‐hexaoxacyclooctadecane)dicaesium(I)] dihydrate], {[Cs2Cl2(C12H24O6)(H2O)2]·2H2O}n, (II), are reported. In (I), all atoms are located on general positions. In (II), the Cs+ cation is located on a mirror plane perpendicular to the a axis, the chloride anion is located on a mirror plane perpendicular to the c axis and the crown‐ether ring is located around a special position with site symmetry 2/m, with two opposite O atoms exactly on the mirror plane perpendicular to the a axis; of one water molecule, only the O atom is located on a mirror plane perpendicular on the a axis, while the other water molecule is completely located on a mirror plane perpendicular to the c axis. Whereas in (I), hydrogen bonds between bromide ligands and water molecules lead to one‐dimensional chains running along the b axis, in (II) two‐dimensional sheets of water molecules and chloride ligands are formed which combine with the polymeric caesium–crown polymer to give a three‐dimensional network. Although both compounds have a similar composition, i.e. a Cs+ cation with a halogen, an 18‐crown‐6 ether and a water ligand, the crystal structures are rather different. On the other hand, it is remarkable that (I) is isomorphous with the already published iodide compound.  相似文献   

11.
3‐(4‐carboxyphenyl)‐1‐methyltriazene N‐oxide reacts with KOH in methanol/pyridine to give {K[O2C‐C6H4‐N(H)NN(CH3)O]·4H2O}n, Potassium‐3‐(4‐carboxylatophenyl)‐1‐methyltriazene N‐oxide). The terminal carboxylato group of the anion does not interact with the cation. In the crystal lattice of {K(C8H8N3O3)·4H2O}n each three of the four water molecules interact with two potassium cations, every K+ ion being the centre of six bridging K···O interactions. Potassium cations interact further with the terminal N‐oxigen atom of single [C8H8N3O3]? anions achieving two parallel {C8H8N3O3?K+}n chains, which are linked through water molecules. The resulting polymeric, one‐dimensional chain, is operated by a screw axis 21 parallel to the crystallographic direction [010], along and equidistant to the K+ centres. The coordination of the K+ centres involves a distortion of the boat conformation of elementary sulfur (S8) with the ideal C2v symmetry.  相似文献   

12.
Diethylenetriamine‐N,N,N′,N′′,N′′‐pentaacetic acid (DTPA) and 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three 45Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc=0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc=1.75 ppm) and 0.01 M [Sc(ox)4]5? (ox2?=oxalato) in 1 M aq. K2C2O4 (δSc=8.31 ppm). In solution, [Sc(dtpa)]2? complex (δSc=83 ppm, ?ν=770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)]? anion (δSc=100 ppm, ?ν=4300 Hz). The solid‐state structure of K8[Sc2(ox)7] ? 13 H2O contains two [Sc(ox)3]3? units bridged by twice “side‐on” coordinated oxalate anion with Sc3+ ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)]2? and [Sc(dota)]? in [(Hguanidine)]2[Sc(dtpa)] ? 3 H2O and K[Sc(dota)][H6dota]Cl2 ? 4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)]? unit exhibits twisted square‐antiprismatic arrangement without an axial ligand (TSA′ isomer) and [Sc(dota)]? and (H6dota)2+ units are bridged by a K+ cation. A surprisingly high value of the last DOTA dissociation constant (pKa=12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and 45Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc3+ ion is much faster than with trivalent lanthanides. Proton‐assisted decomplexation of the [Sc(dota)]? complex (τ1/2=45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)]? complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium radioisotopes.  相似文献   

13.
The reaction of the Ga+ source [Ga(PhF)2]+[Al(ORF)4]? with the neutral σ‐donor ligand dmap (4‐Me2N‐C6H4N) produces the unexpectedly large and fivefold positively charged cluster cation salt [Ga5(dmap)10]5+([Al(ORF)4]?)5. It includes a regular and planar Ga5 pentagon with strong metal–metal bonding. Additionally, the compound represents the first salt in which an ionic 1:5 packing is realized. We discuss the nature of this structure which results from the conversion of the non‐bonding 4s2 lone‐pair orbitals into fully Ga‐Ga‐bonding orbitals and the solid‐state arrangement of the ions constituting the lattice as an almost orthohexagonal AX5 lattice, possibly the aristotype of any 5:1 salt.  相似文献   

14.
To develop a metal–organic framework (MOF) for hydrogen storage, SNU‐200 incorporating a 18‐crown‐6 ether moiety as a specific binding site for selected cations has been synthesized. SNU‐200 binds K+, NH4+, and methyl viologen(MV2+) through single‐crystal to single‐crystal transformations. It exhibits characteristic gas‐sorption properties depending on the bound cation. SNU‐200 activated with supercritical CO2 shows a higher isosteric heat (Qst) of H2 adsorption (7.70 kJ mol?1) than other zinc‐based MOFs. Among the cation inclusions, K+ is the best for enhancing the isosteric heat of the H2 adsorption (9.92 kJ mol?1) as a result of the accessible open metal sites on the K+ ion.  相似文献   

15.
In the crystal structure of the title hydrated salt, poly[(μ2‐aqua)(μ4‐1‐sulfido‐β‐D‐glucoside)potassium], [K(C6H11O5S)(H2O)]n or K+·C6H11O5S·H2O, each thioglucoside anion coordinates to four K+ cations through three of its four hydroxy groups, forming a three‐dimensional polymeric structure. The negatively charged thiolate group in each anion does not form an efficient coordination bond with a K+ cation, but forms intermolecular hydrogen bonds with four hydroxy groups, which appears to sustain the polymeric structure. The Cremer–Pople parameters for the thioglucoside ligand (Q = 0.575, θ = 8.233° and ϕ = 353.773°) indicate a slight distortion of the pyranose ring.  相似文献   

16.
[Me4N]+[SO2F3]?, the first example of a [SO2F3]? salt, has been prepared from Me4NF and SO2F2. The colorless, microcrystalline solid was characterized by its infrared and Raman spectra. The trigonal bipyramidal structure of C2v symmetry of the [SO2F3]? anion is predicted by ab initio calculations. Two oxygen atoms with d(SO)=143.2 pm and one fluorine atom with d(SF)=157.9 pm occupy the equatorial plane. The two fluorine atoms in the axial position with d(SF)=168.5 pm are repulsed by the two oxygen atoms forming a bent axis with ?(FaxSFax)=165.2°.  相似文献   

17.
The solid state structures of three nitroformate (NF) salts were determined using single crystal X‐ray crystallography. The NF anion was found to be a non‐planar moiety which adopts either the commonly observed C2v conformation or distorted propeller conformation (D3) in the case of the silver salts, or, a C2 conformation in the case of the potassium salt. This latter C2 conformation has been uniquely observed for potassium nitroformate. All structures exhibit cation‐anion interactions that influence the structure of the anion. The 13C and 14N NMR spectra of the NF anion show broad singlets, which indicates the equivalence of the nitro groups in solution within the NMR time‐scale. In addition, the vibrational and mass spectra of potassium nitroformate and silver nitroformate monohydrate were recorded. Furthermore, the gaseous decomposition products of potassium nitroformate at 25 °C were detected using IR spectroscopy and mass spectrometry.  相似文献   

18.
The reaction of [Pt(CH2COMe)(Ph)(cod)] (cod=1,5‐cyclooctadiene) with (ArCH2NH2CH2‐C6H4COOH)+(PF6)? (Ar=4‐tBuC6H4 or 9‐anthryl) in the presence of cyclic oligoethers such as dibenzo[24]crown‐8 (DB24C8) and dicyclohexano[24]crown‐8 (DC24C8) produces {(ce)[ArCH2NH2CH2C6H4COOPt(Ph)(cod)]}+(PF6)? (ce=DB24C8 or DC24C8, Ar=4‐tBuC6H4 or 9‐anthryl) with interlocked structures. FABMS and NMR spectra of a solution of these compounds indicate that the Pt complexes with a secondary ammonium group and DB24C8 (or DC24C8) make up the axis and cyclic components, respectively. Temperature‐dependent 1H NMR spectra of a solution of {(DB24C8)[4‐tBuC6H4CH2NH2CH2‐C6H4COOPt(Ph)(cod)]}+(PF6)? ({(DB24C8)[ 4 ‐H]}+(PF6)?) show equilibration with free DB24C8 and the axis component. The addition of DB24C8 to a solution of {(DC24C8)[ 4 ‐H]}+(PF6)? causes partial exchange of the macrocyclic component of the interlocked molecules, giving a mixture of {(DC24C8)[ 4 ‐H]}+(PF6)?, {(DB24C8)[ 4 ‐H]}+(PF6)?, and free macrocyclic compounds. The reaction of 3,5‐Me2C6H3COCl with {(DB24C8)[ 4 ‐H]}+(PF6)? affords the organic rotaxane {(DB24C8)(4‐tBuC6H4CH2NH2CH2‐C6H4COOCOC6H3Me2‐3,5)}+(PF6)? through C? O bond formation between the aroyl group and the carboxylate ligand of the axis component. The addition of 2,2′‐bipyridine (bpy) to a solution of {(DB24C8)[ 4 ‐H]}+(PF6)? induces the degradation of the interlocked structure to form a complex with trigonal bipyramidal coordination, [Pt(Ph)(bpy)(cod)]+(PF6)?, whereas the reaction of bpy with [Pt(OCOC6H4Me‐4)(Ph)(cod)] produces the square‐planar complex [Pt(OCOC6H4Me‐4)(Ph)(bpy)].  相似文献   

19.
The title salt, (C5H5N4S)2[ZnCl4], consists of two 6‐thioxo‐1,6‐dihydro­purinium (6mpH2+) cations (A and B) and a tetra­chloro­zincate anion, which are held together by N—H⋯Cl and C—H⋯Cl inter­actions. There is an anion–π inter­action between one Cl atom of the [ZnCl4] anion and the pyrimidine ring of the 6mpH2+(B) cation. Inter­molecular π–π stacking inter­actions allow 6mpH2+(A) cations to form anti­parallel pairs. One inter­esting structural feature is the double N—H⋯N inter­molecular hydrogen bonds between two 6mpH2+(A) cations. This kind of inter­action, mimicking that of natural nucleobases, can be very valuable in designing new therapeutic purine derivatives.  相似文献   

20.
Molecular ferroelectrics have displayed a promising future since they are light‐weight, flexible, environmentally friendly and easily synthesized, compared to traditional inorganic ferroelectrics. However, how to precisely design a molecular ferroelectric from a non‐ferroelectric phase transition molecular system is still a great challenge. Here we designed and constructed a molecular ferroelectric by double regulation of the anion and cation in a simple crown ether clathrate, 4 , [K(18‐crown‐6)]+[PF6]?. By replacing K+ and PF6? with H3O+ and [FeCl4]? respectively, we obtained a new molecular ferroelectric [H3O(18‐crown‐6)]+[FeCl4]?, 1 . Compound 1 undergoes a para‐ferroelectric phase transition near 350 K with symmetry change from P21/n to the Pmc21 space group. X‐ray single‐crystal diffraction analysis suggests that the phase transition was mainly triggered by the displacement motion of H3O+ and [FeCl4]? ions and twist motion of 18‐crown‐6 molecule. Strikingly, compound 1 shows high a Curie temperature (350 K), ultra‐strong second harmonic generation signals (nearly 8 times of KDP), remarkable dielectric switching effect and large spontaneous polarization. We believe that this research will pave the way to design and build high‐quality molecular ferroelectrics as well as their application in smart materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号