首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation of amyloid β‐peptide (Aβ) is closely related to the pathogenesis of Alzheimer’s disease (AD). Although much effort has been devoted to the construction of molecules that inhibit the aggregation of Aβ1‐42, high doses are needed for the inhibition of Aβ aggregation in many cases. Previously, we reported that designed green fluorescent protein (GFP) analogues that gives pseudo‐Aβ β‐sheet structures can work as an aggregation inhibitor against Aβ. To further test this design strategy, we constructed protein analogues that mimic Aβ β‐sheet structures of amyloids by using insulin‐like growth factor 2 receptor domain 11 (IGF2R‐d11) as a scaffold. A designed protein, named IG11KK, which has a parallel configuration of Aβ‐like β sheets, can bind more preferentially to oligomeric Aβ1‐42 than the monomer. Moreover, IG11KK suppressed the aggregation of Aβ1‐42 efficiently, even though lower concentrations of IG11KK than Aβ were used. The aggregation kinetics of Aβ in the presence of the designed proteins revealed that IG11KK can work as an inhibitor not only for the early to middle stages, but also in the latter stage of Aβ aggregation owing to its favorable binding to oligomeric structures of Aβ. The design strategy using β‐barrel proteins such as IGF2R‐d11 and GFP is useful in generating excellent inhibitors of protein misfolding and amyloid formation.  相似文献   

2.
3.
Extracellular deposition of amyloid‐beta (Aβ) protein, a fragment of membrane glycoprotein called β‐amyloid precursor transmembrane protein (βAPP), is the major characteristic for the Alzheimer's disease (AD). However, the structural and mechanistic information of forming Aβ protein aggregates in a lag phase in cell exterior has been still limited. Here, we have performed multiple all‐atom molecular dynamics simulations for physiological 42‐residue amyloid‐beta protein (Aβ42) in explicit water to characterize most plausible aggregation‐prone structure (APS) for the monomer and the very early conformational transitions for Aβ42 protein misfolding process in a lag phase. Monitoring the early sequential conformational transitions of Aβ42 misfolding in water, the APS for Aβ42 monomer is characterized by the observed correlation between the nonlocal backbone H‐bond formation and the hydrophobic side‐chain exposure. Characteristics on the nature of the APS of Aβ42 allow us to provide new insight into the higher aggregation propensity of Aβ42 over Aβ40, which is in agreement with the experiments. On the basis of the structural features of APS, we propose a plausible aggregation mechanism from APS of Aβ42 to form fibril. The structural and mechanistic observations based on these simulations agree with the recent NMR experiments and provide the driving force and structural origin for the Aβ42 aggregation process to cause AD. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

4.
Alzheimer’s disease (AD), a progressive severe neurodegenerative disorder, is currently incurable, despite intensive efforts worldwide. Herein, we demonstrate that catalytic oxygenation of amyloid‐β peptides (Aβ) might be an effective approach to treat AD. Aβ1–42 was oxygenated under physiologically‐relevant conditions (pH 7.4, 37 °C) using a riboflavin catalyst and visible light irradiation, with modifications at the Tyr10, His13, His14, and Met35 residues. The oxygenated Aβ1–42 exhibited considerably lower aggregation potency and neurotoxicity compared with native Aβ. Photooxygenation of Aβ can be performed even in the presence of cells, by using a selective flavin catalyst attached to an Aβ‐binding peptide; the Aβ cytotoxicity was attenuated in this case as well. Furthermore, oxygenated Aβ1–42 inhibited the aggregation and cytotoxicity of native Aβ.  相似文献   

5.
《Electroanalysis》2017,29(12):2906-2912
The aggregation of amyloid‐β peptide (Aβ) is believed to play a crucial role in the Alzheimer's disease (AD) pathogenesis and is considered as a therapeutic target for treating AD. The Aβ electrooxidation via a Tyr‐10 residue, sensitive to a depletion of a pool of Aβ monomers and oligomers in the course of Aβ aggregation, may be employed for testing natural and synthetic organic compounds (including short peptides) potentially able to inhibit the pathological Aβ aggregation (antiaggregants). In the present work, using the known peptide antiaggregant RGKLVFFGR‐NH2 (OR2) and its scrambled variant KGLRVGFRF‐NH2 as a control, we demonstrate that the electrochemical method based on electrooxidation of an Aβ42 Tyr‐10 residue, when combined with methods allowing for the evaluation of the Aβ42 aggregate structure and size, can provide essential information regarding the antiaggregant impact on Aβ42 aggregation. Electrochemical measurements were performed using square wave voltammetry on carbon screen printed electrodes whereas the Aβ42 aggregate structure and size were analyzed by means of the conventional thioflavin T (ThT) based fluorescence assay and dynamic light scattering. While inhibiting Aβ42 fibrillation as manifested by the unchanged level of ThT fluorescence, the OR2 peptide antiaggregant had no effect on the decrease of Aβ42 electrooxidation current in the course of Aβ42 aggregation. These observations suggest that OR2 does not stop the aggregation but redirects it into a pathway where amorphous rather than fibrillar aggregates are formed. Hence, the direct electrochemistry appears to offer a simple and cost‐effective approach for probing potential peptide antiaggregants, which is complementary to methods based on detecting Aβ aggregates.  相似文献   

6.
In addition to the prototypic amyloid‐β (Aβ) peptides Aβ1–40 and Aβ1–42, several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid‐phase peptide synthesis of the N‐terminally elongated Aβ‐peptides Aβ?3–38, Aβ?3–40, and Aβ?3–42. Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ?3–38 and Aβ?3–40 are generated by transfected cells even in the presence of a tripartite β‐site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(?3) can be separated from N‐terminally‐truncated Aβ forms by high‐resolution isoelectric‐focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N‐terminally elongated Aβ variants in Alzheimer's disease.  相似文献   

7.
Amyloid peptides, Aβ1–40 and Aβ1–42, represent major molecular targets to develop potential drugs and diagnostic tools for Alzheimer’s Disease (AD). In fact, oligomeric and fibrillar aggregates generated by these peptides are amongst the principal components of amyloid plaques found post mortem in patients suffering from AD. Rosmarinic acid has been demonstrated to be effective in preventing the aggregation of amyloid peptides in vitro and to delay the progression of the disease in animal models. Nevertheless, no information is available about its molecular mechanism of action. Herein, we report the NMR characterization of the interaction of Salvia sclareoides extract and that of its major component, rosmarinic acid, with Aβ1–42 peptide, whose oligomers have been described as the most toxic Aβ species in vivo. Our data shed light on the structural determinants of rosmarinic acid–Aβ1–42 oligomers interaction, thus allowing the elucidation of its mechanism of action. They also provide important information for the rational design of new compounds with higher affinity for Aβ peptides to generate new anti‐amyloidogenic molecules and/or molecular tools for the specific targeting of amyloid aggregates in vivo. In addition, we identified methyl caffeate, another natural compound present in different plants and human diet, as a good ligand of Aβ1–42 oligomers, which also shows anti‐amyloidogenic activity. Finally, we demonstrated the possibility to exploit STD‐NMR and trNOESY experiments to screen extracts from natural sources for the presence of Aβ peptide ligands.  相似文献   

8.
A wealth of epidemiological evidence indicates a strong link between type 2 diabetes (T2D) and Alzheimer's disease (AD). The fiber deposition with cross‐β‐sheet structure formed by self‐aggregation and misfolding of amyloidogenic peptides is a common hallmark of both diseases. For the patients with T2D, the fibrils are mainly found in the islets of Langerhans that results from the accumulation of human islet amyloid polypeptide (hIAPP). The major component of aggregates located in the brain of AD patients is amyloid‐β (Aβ). Many biophysical and physiological properties are shared by hIAPP and Aβ, and both peptides show similar cytotoxic mechanisms. Therefore, it is meaningful to investigate the possible cross‐interactions of hIAPP and Aβ in both diseases. In this article, the segment 25–35 of Aβ was selected because Aβ25–35 was a core region in the process of amyloid formation and showed similar aggregation tendency and toxicity with full‐length Aβ. The electrospray ionization‐ion mobility‐mass spectrometry analysis and thioflavin T fluorescence kinetic analysis combined with transmission electron microscopy were used to explore the effects of the coexistence of Aβ25–35 and hIAPP on the self‐aggregation of both peptides and whether there was co‐assembly in fibrillation. The results indicated that the aggregation of hIAPP and Aβ25–35 had two nucleation stages in the binary mixtures. hIAPP and Aβ25–35 had a high binding affinity and a series of hetero‐oligomers formed in the mixtures of hIAPP and Aβ25–35 in the early stage. The cross‐reaction between hIAPP monomers and Aβ25–35 monomers as well as a little of oligomers during primary nucleation stage could accelerate the aggregation of Aβ25–35. However, owing to the obvious difference in aggregation ability between hIAPP and Aβ25–35, this cross‐interaction had no significant impact on the self‐assembly of hIAPP. Our study may offer a better understanding for exploring the molecular mechanism of the association between AD and T2D observed in clinical and epidemiological studies and developing therapeutic strategies against amyloid diseases.  相似文献   

9.
《Electroanalysis》2017,29(3):722-729
Accumulating evidence suggests that interaction between amyloid‐β (Aβ) and cell membrane is crucial to the pathogenesis of Alzheimer's disease (AD), and thus an increasing understanding of the impact of membrane composition on Aβ‐membrane interaction becomes essential for the mechanism elucidation of Aβ‐membrane interaction and the early diagnosis of AD. In this work, electrically neutral phosphatidylcholine (PC) as the most major class of membrane phospholipids, including 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine (DPPC), 1,2‐distearoyl‐sn‐glycero‐3‐phosphocholine (DSPC), 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine (POPC), and Aβ(1–40) as the most common amyloid protein were selected as the research subjects, and a developed cantilever‐based biosensor, on which liposomes comprised of PC lipids were immobilized, was applied to characterize in real time the interactions between Aβ(1–40) and membranes comprised of PC lipids with different hydrophobic acyl chains, and to evaluate the effect of cholesterol incorporated in membrane on Aβ‐membrane interaction during the whole process of Aβ(1–40) fibrillization. The results illustrate that the interaction between Aβ(1–40) and PC membrane can be divided into three stages, which are related to the change in molecular states of Aβ. More importantly, it is found that membranes comprised of PC lipids with shorter saturated acyl chains show higher interaction ability with Aβ(1–40), and the incorporation of cholesterol into PC bilayer can remarkably accelerate and strengthen Aβ(1–40)‐membrane interaction. These results confirm that hydrophobicity is the main driving force for the interactions between Aβ(1–40) and PC membranes. In return, the above results enlightened us to apply the current micro‐cantilever immobilized with cholesterol‐containing DPPC liposomes to challenge the detection of low‐concentration Aβ(1–40). This time 50‐nM Aβ(1–40) in aqueous solution has been effectively detected, suggesting that this proposed detection technique would contribute to Aβ detection and early diagnosis of AD in the future.  相似文献   

10.
Aggregates of amyloid beta (Aβ) peptides are believed to be responsible for the neuropathology of Alzheimer’s disease. In this work, ferrocene (Fc) is attached to the aggregating core of the Aβ peptides, KLVFFAE. Inhibition of Fc‐KLVFFAE aggregation by curcumin, a natural compound, was monitored by HPLC‐electrochemical detection (HPLC‐EC). The Fc oxidation current is dependent on the incubation condition and curcumin can retain Fc‐KLVFFAE in its monomeric form. We demonstrate that tagging Fc to KLVFFAE affords a cost‐effective and electroactive mimicry of Aβ(1? 42) and HPLC‐EC is suitable for sensitive, reproducible, and facile screening of drugs for inhibiting the aggregation of Aβ peptides.  相似文献   

11.
Inhibition of the aggregation of the monomeric peptide β‐amyloid (Aβ) into oligomers is a widely studied therapeutic approach in Alzheimer’s disease (AD). Many small molecules have been reported to work in this way, including 1,4‐naphthoquinon‐2‐yl‐L ‐tryptophan (NQ‐Trp). NQ‐Trp has been reported to inhibit aggregation, to rescue cells from Aβ toxicity, and showed complete phenotypic recovery in an in vivo AD model. In this work we investigated its molecular mechanism by using a combined approach of experimental and theoretical studies, and obtained converging results. NQ‐Trp is a relatively weak inhibitor and the fluorescence data obtained by employing the fluorophore widely used to monitor aggregation into fibrils can be misinterpreted due to the inner filter effect. Simulations and NMR experiments showed that NQ‐Trp has no specific “binding site“‐type interaction with mono‐ and dimeric Aβ, which could explain its low inhibitory efficiency. This suggests that the reported anti‐AD activity of NQ‐Trp‐type molecules in in vivo models has to involve another mechanism. This study has revealed the potential pitfalls in the development of aggregation inhibitors for amyloidogenic peptides, which are of general interest for all the molecules studied in the context of inhibiting the formation of toxic aggregates.  相似文献   

12.
One of the hallmarks of Alzheimers disease is the deposition of amyloid plaques, which consist of β‐amyloid (Aβ) peptides in fibrillar states. Nonfibrillar Aβ aggregates have been considered as an important intermediate in the pathway of fibrillization, but little is known about the formation mechanism. The on‐pathway β‐sheet intermediates of Aβ40 peptides can be trapped by incubating the peptides in liposomes formed by zwitterionic lipids. The aggregates of Aβ40 peptides have been prepared at a peptide concentration of less than 10 μm . Solid‐state NMR spectroscopy data show that the backbone conformation of the aggregates is almost identical to that of the fibrils formed in free solution. In contrast to anionic lipids, zwitterionic lipids, which are typical of neuronal soma, did not induce any significant conformational difference in Aβ40 fibrils. This liposome–Aβ system may serve as a useful model to study the fibril formation mechanism.  相似文献   

13.
AD (Alzheimer’s disease) is a progressive neurodegenerative disorder characterized by the cerebral accumulation of fibrillar amyloid‐beta (Aβ) aggregates. Here we present the electrochemistry of two novel sym‐triazine derivatives (TAE‐1, TAE‐2) as modulators of Aβ1–42 aggregation in vitro. Incubation studies conducted at physiological conditions demonstrated strong inhibition of β‐sheet fibril formation. Uniquely, square‐wave voltammetry indicated progressive changes in the surface‐availability of amyloid‐intercalated triazines for oxidation, mediated by competing peptide self‐assembly. Time‐resolved voltammetric analysis showed increasing anodic peak currents (≥3‐fold) and progressive shifts in redox potentials, measured over 24 h. The more potent aggregation modulator (TAE‐2) showed prolonged association during the pre‐nucleation states of Aβ.  相似文献   

14.
Aggregated β‐amyloid (Aβ) is widely considered as a key factor in triggering progressive loss of neuronal function in Alzheimer's disease (AD), so targeting and inhibiting Aβ aggregation has been broadly recognized as an efficient therapeutic strategy for curing AD. Herein, we designed and prepared an organic platinum‐substituted polyoxometalate, (Me4N)3[PW11O40(SiC3H6NH2)2PtCl2] (abbreviated as PtII‐PW11) for inhibiting Aβ42 aggregation. The mechanism of inhibition on Aβ42 aggregation by PtII‐PW11 was attributed to the multiple interactions of PtII‐PW11 with Aβ42 including coordination interaction of Pt2+ in PtII‐PW11 with amino group in Aβ42, electrostatic attraction, hydrogen bonding and van der Waals force. In cell‐based assay, PtII‐PW11 displayed remarkable neuroprotective effect for Aβ42 aggregation‐induced cytotoxicity, leading to increase of cell viability from 49 % to 67 % at a dosage of 8 μm . More importantly, the PtII‐PW11 greatly reduced Aβ deposition and rescued memory loss in APP/PS1 transgenic AD model mice without noticeable cytotoxicity, demonstrating its potential as drugs for AD treatment.  相似文献   

15.
Targeting amyloid‐β (Aβ)‐induced complex neurotoxicity has received considerable attention in the therapeutic and preventive treatment of Alzheimer’s disease (AD). The complex pathogenesis of AD suggests that it requires comprehensive treatment, and drugs with multiple functions against AD are more desirable. Herein, AuNPs@POMD‐pep (AuNPs: gold nanoparticles, POMD: polyoxometalate with Wells–Dawson structure, pep: peptide) were designed as a novel multifunctional Aβ inhibitor. AuNPs@POMD‐pep shows synergistic effects in inhibiting Aβ aggregation, dissociating Aβ fibrils and decreasing Aβ‐mediated peroxidase activity and Aβ‐induced cytotoxicity. By taking advantage of AuNPs as vehicles that can cross the blood–brain barrier (BBB), AuNPs@POMD‐pep can cross the BBB and thus overcome the drawbacks of small‐molecule anti‐AD drugs. Thus, this work provides new insights into the design and synthesis of inorganic nanoparticles as multifunctional therapeutic agents for treatment of AD.  相似文献   

16.
Alzheimer's disease (AD) is a neurodegenerative disorder and the primary cause of age‐related dementia. The etiology of AD is complex and has not been completely elucidated. Herein, we report that treatment with elastin‐like polypeptides (ELPs), a component of the brain extracellular matrix (ECM), significantly increased the levels of AD‐related amyloid‐β peptides (Aβ) both in vitro and in vivo. Regarding the molecular mechanism(s), the upregulation of Aβ levels was related to increased proteolytic processing of the amyloid precursor protein. Furthermore, nesting tests demonstrated that the ELP‐treated animals showed significant neurobehavioral deficits with cognitive impairment. These results suggest that the elastin is associated with AD‐related pathological and behavioral changes. This finding presents a new aspect for Alzheimer's amyloidosis event and provides a great promise in developing ELP‐based model systems to better understand the pathogenesis of AD.  相似文献   

17.
The properties of eumelanin‐like particles (EMPs) and pheomelanin‐like particles (PMPs) in regulating the process of amyloid formation of amyloid‐beta 42 (Aβ42) were examined. EMPs and PMPs are effective both in interfering with amyloid aggregation of Aβ42 and in remodeling matured Αβ42 fibers. The results suggest that some (but not all) molecular species consisting of melanin‐like particles (MPs) are responsible for their inhibiting property toward amyloid formation, and the influence is likely manifested by long‐range interactions. Incubating preformed Aβ42 fibers with catechols or MPs leads to the formation of mesh‐like, interconnected Aβ42 fibers encapsulated with melanin‐like material. MPs are kinetically more effective than catechol monomers in this process, and a detailed investigation reveals that 4,5‐dihydroxyindole, a major intermediate in the formation of melanin‐like species, and its derivatives are mainly responsible for remodeling amyloid fibers.  相似文献   

18.
Brain copper imbalance plays an important role in amyloid‐β aggregation, tau hyperphosphorylation, and neurotoxicity observed in Alzheimer's disease (AD). Therefore, the administration of biocompatible metal‐binding agents may offer a potential therapeutic solution to target mislocalized copper ions and restore metallostasis. Histidine‐containing peptides and proteins are excellent metal binders and are found in many natural systems. The design of short peptides showing optimal binding properties represents a promising approach to capture and redistribute mislocalized metal ions, mainly due to their biocompatibility, ease of synthesis, and the possibility of fine‐tuning their metal‐binding affinities in order to suppress unwanted competitive binding with copper‐containing proteins. In the present study, three peptides, namely HWH , HKCH , and HAH , have been designed with the objective of reducing copper toxicity in AD. These tripeptides form highly stable albumin‐like complexes, showing higher affinity for CuII than that of Aβ(1‐40). Furthermore, HWH , HKCH , and HAH act as very efficient inhibitors of copper‐mediated reactive oxygen species (ROS) generation and prevent the copper‐induced overproduction of toxic oligomers in the initial steps of amyloid aggregation in the presence of CuII ions. These tripeptides, and more generally small peptides including the sequence His‐Xaa‐His at the N‐terminus, may therefore be considered as promising motifs for the future development of new and efficient anti‐Alzheimer drugs.  相似文献   

19.
In the present work, a new electrochemical strategy for the sensitive and specific detection of soluble β‐amyloid Aβ(1–40/1–42) peptides in a rat model of Alzheimer’s disease (AD) is described. In contrast to previous antibody‐based methods, β‐amyloid(1–40/1–42) was quantified based on its binding to gelsolin, a secretory protein present in the cerebrospinal fluid (CSF) and plasma. The level of soluble β‐amyloid peptides in the CSF and various brain regions were found with this method to be lower in rats with AD than in normal rats.  相似文献   

20.
Abnormal interactions of Cu and Zn ions with the amyloid β (Aβ) peptide are proposed to play an important role in the pathogenesis of Alzheimer's disease (AD). Disruption of these metal-peptide interactions using chemical agents holds considerable promise as a therapeutic strategy to combat this incurable disease. Reported herein are two bifunctional compounds (BFCs) L1 and L2 that contain both amyloid-binding and metal-chelating molecular motifs. Both L1 and L2 exhibit high stability constants for Cu(2+) and Zn(2+) and thus are good chelators for these metal ions. In addition, L1 and L2 show strong affinity toward Aβ species. Both compounds are efficient inhibitors of the metal-mediated aggregation of the Aβ(42) peptide and promote disaggregation of amyloid fibrils, as observed by ThT fluorescence, native gel electrophoresis/Western blotting, and transmission electron microscopy (TEM). Interestingly, the formation of soluble Aβ(42) oligomers in the presence of metal ions and BFCs leads to an increased cellular toxicity. These results suggest that for the Aβ(42) peptide-in contrast to the Aβ(40) peptide-the previously employed strategy of inhibiting Aβ aggregation and promoting amyloid fibril dissagregation may not be optimal for the development of potential AD therapeutics, due to formation of neurotoxic soluble Aβ(42) oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号