首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
The synthesis, structure, and properties of bischloro, μ‐oxo, and a family of μ‐hydroxo complexes (with BF4?, SbF6?, and PF6? counteranions) of diethylpyrrole‐bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ‐oxo complexes are in the high‐spin state (S=5/2). However, the two iron centers in the diiron(III) μ‐hydroxo complexes are equivalent with high spin (S=5/2) in the solid state and an intermediate‐spin state (S=3/2) in solution. The molecules have been compared with previously known diiron(III) μ‐hydroxo complexes of ethane‐bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X‐ray structural parameters between diethylpyrrole and ethane‐bridged μ‐hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane‐bridged μ‐hydroxo complex, both iron centers become equivalent in the diethylpyrrole‐bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole‐bridged diiron(III) μ‐oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=?137.7 cm?1), although the coupling constant is reduced to only a weak value in the μ‐hydroxo complexes (J=?42.2, ?44.1, and ?42.4 cm?1 for the BF4, SbF6, and PF6 complexes, respectively).  相似文献   

2.
Reported herein is a hitherto unknown family of diiron(III)‐μ‐hydroxo bisporphyrins in which two different spin states of Fe are stabilized in a single molecular framework, although both cores have identical molecular structures. Protonation of the oxo‐bridged dimer ( 2 ) by using strong Brønsted acids, such as HI, HBF4, and HClO4, produce red μ‐hydroxo complexes with I3? ( 3 ), BF4? ( 4 ), and ClO4? ( 5 ) counterions, respectively. The X‐ray structure of the molecule reveals that the Fe? O bond length increases on going from the μ‐oxo to the hydroxo complex, whereas the Fe‐O(H)‐Fe unit becomes more bent, which results in the smallest known Fe‐O(H)‐Fe angles of 142.5(2) and 141.2(1)° for 3 and 5 , respectively. In contrast, the Fe‐O(H)‐Fe angle remains unaltered in 4 from the corresponding μ‐oxo complex. The close approach of two rings in a molecule results in unequal core deformations in 3 and 4 , whereas the cores are deformed almost equally but to a lesser extent in 5 . Although 3 was found to have nearly high‐spin and admixed intermediate Fe spin states in cores I and II, respectively, two admixed intermediate spin states were observed in 4 . Even though the cores have identical chemical structures, crucial bond parameters, such as the Fe? Np, Fe? O, and Fe???Ctp bond lengths and the ring deformations, are all different between the two FeIII centers in 3 and 4 , which leads to an eventual stabilization of two different spin states of Fe in each molecule. In contrast, the two Fe centers in 5 are equivalent and assigned to high and intermediate spin states in the solid and solution states, respectively. The spin states are thus found to be dependent on the counterions and can also be reversibly interconverted. Upon protonation, the strong antiferromagnetic coupling in the μ‐oxo dimer (J, ?126.6 cm?1) is attenuated to almost zero in the μ‐hydroxo complex with the I3? counterion, whereas the values of J are ?36 and ?42 cm?1, respectively, for complexes with BF4? and ClO4? counterions.  相似文献   

3.
For well over 20 years, μ‐oxo‐diiron corroles, first reported by Vogel and co‐workers in the form of μ‐oxo‐bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s?1, ΔEQ 2.35 mm s?1), have been thought of as comprising a pair antiferromagnetically coupled low‐spin FeIV centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)‐oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not FeIV but intermediate‐spin FeIII coupled to a corrole.2?. The intramolecular spin couplings in {Fe[TPC]}2(μ‐O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg–Dirac–van Vleck spin Hamiltonian H=JFe–corrole(SFe?Scorrole)+JFe–Fe′(SFe?SFe′)+JFe′–corrole(SFe′?Scorrole′), which yielded JFe–corrole=JFe′–corrole′=0.355 eV (2860 cm?1) and JFe–Fe′=0.068 eV (548 cm?1). The unexpected stability of μ‐oxo‐diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence.  相似文献   

4.
A hitherto unknown family of diiron(III)–μ‐fluoro bisporphyrins has been synthesized and structurally characterized. Fluoride abstraction from SbF6? and BF4? resulted in the synthesis of the μ‐fluoro complexes of ethane‐ and ethene‐bridged diiron(III) bisporphyrins. Two such complexes were structurally characterized, which revealed a single fluoro bridge between two iron centers with a remarkably bent Fe‐F‐Fe unit. Although isoelectronic with the μ‐hydroxo complexes, the μ‐fluoro species are quite divergent in terms of the electronic structure and properties. UV/Vis spectroscopy of the μ‐fluoro complex exhibits a large redshift (ca. 18 nm) of the Soret band in comparison to their μ‐hydroxo analog. Combined analysis by single crystal X‐ray structure determination and Mössbauer and 1H NMR spectroscopy revealed the presence of two equivalent iron(III) centers in the μ‐fluoro complexes in both solid and solution phases. In contrast, the iron(III) centers of the μ‐hydroxo complexes are known to be inequivalent. Variable‐temperature magnetic studies show a weak antiferromagnetic interaction between the iron(III) centers of the μ‐fluoro complexes with coupling constants (J) ranging from ?33 to ?40 cm?1. The experimental results were further supported by DFT calculations.  相似文献   

5.
Addition of 2,4,6‐trinitrophenol (HTNP) to an ethene‐bridged diiron(III) μ‐oxo bisporphyrin ( 1 ) in CH2Cl2 initially leads to the formation of diiron(III) μ‐hydroxo bisporphyrin ( 2? TNP) with a phenolate counterion that, after further addition of HTNP or dissolution in a nonpolar solvent, converts to a diiron(III) complex with axial phenoxide coordination ( 3? (TNP)2). The progress of the reaction from μ‐oxo to μ‐hydroxo to axially ligated complex has been monitored in solution by using 1H NMR spectroscopy because their signals appear in three different and distinct spectral regions. The X‐ray structure of 2? TNP revealed that the nearly planar TNP counterion fits perfectly within the bisporphyrin cavity to form a strong hydrogen bond with the μ‐hydroxo group, which thus stabilizes the two equivalent iron centers. In contrast, such counterions as I5, I3, BF4, SbF6, and PF6 are found to be tightly associated with one of the porphyrin rings and, therefore, stabilize two different spin states of iron in one molecule. A spectroscopic investigation of 2? TNP has revealed the presence of two equivalent iron centers with a high‐spin state (S=5/2) in the solid state that converts to intermediate spin (S=3/2) in solution. An extensive computational study by using a range of DFT methods was performed on 2? TNP and 2 +, and clearly supports the experimentally observed spin flip triggered by hydrogen‐bonding interactions. The counterion is shown to perturb the spin‐state ordering through, for example, hydrogen‐bonding interactions, switched positions between counterion and axial ligand, ion‐pair interactions, and charge polarization. The present investigation thus provides a clear rationalization of the unusual counterion‐specific spin states observed in the μ‐hydroxo bisporphyrins that have so far remained the most outstanding issue.  相似文献   

6.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

7.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

8.
In acetate buffer media (pH 4.5–5.4) thiosulfate ion (S2O32?) reduces the bridged superoxo complex, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]4+ ( 1 ) to its corresponding μ‐peroxo product, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]3+ ( 2 ) and along a parallel reaction path, simultaneously S2O32? reacts with 1 to produce the substituted μ‐thiosulfato‐μ‐superoxo complex, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]3+ ( 3 ). The formation of μ‐thiosulfato‐μ‐superoxo complex ( 3 ) appears as a precipitate which on being subjected to FTIR shows absorption peaks that support the presence of Co(III)‐bound S‐coordinated S2O32? group. In reaction media, 3 readily dissolves to further react with S2O32? to produce μ‐thiosulfato‐μ‐peroxo product, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]2+ ( 4 ). The observed rate (k0) increases with an increase in [TThio] ([TThio] is the analytical concentration of S2O32?) and temperature (T), but it decreases with an increase in [H+] and the ionic strength (I). Analysis of the log At versus time data (A is the absorbance of 1 at time t) reveals that overall the reaction follows a biphasic consecutive reaction path with rate constants k1 and k2 and the change of absorbance is equal to {a1 exp(–k1t) + a2 exp(–k2t)}, where k1 > k2.  相似文献   

9.
X‐ray studies show that 1,3‐diphenyl‐7‐(thien‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 6 ) adopts a distorted, slipped π‐stacked structure of centrosymmetric dimers with alternate short and long interplanar distances (3.48 and 3.52 Å). Cyclic voltammograms of 7‐(thien‐2‐yl)benzotriazin‐4‐yl 6 show two fully reversible waves that correspond to the ?1/0 and 0/+1 processes. EPR and DFT studies on radical 6 indicate that the spin density is mainly delocalized over the triazinyl fragment. Magnetic susceptibility measurements show that radical 6 obeys Curie–Weiss behavior in the 5–300 K region with C=0.378 emu K mol?1 and θ=+4.72 K, which is consistent with ferromagnetic interactions between S=1/2 radicals. Fitting the magnetic susceptibility revealed the behavior is consistent with an alternating ferromagnetic chain (g=2.0071, J1=+7.12 cm?1, J2=+1.28 cm?1).  相似文献   

10.
FeI centers in iron–sulfide complexes have little precedent in synthetic chemistry despite a growing interest in the possible role of unusually low valent iron in metalloenzymes that feature iron–sulfur clusters. A series of three diiron [(L3Fe)2(μ‐S)] complexes that were isolated and characterized in the low‐valent oxidation states FeII? S? FeII, FeII? S? FeI, and FeI? S? FeI is described. This family of iron sulfides constitutes a unique redox series comprising three nearly isostructural but electronically distinct Fe2(μ‐S) species. Combined structural, magnetic, and spectroscopic studies provided strong evidence that the pseudotetrahedral iron centers undergo a transition to low‐spin S=1/2 states upon reduction from FeII to FeI. The possibility of accessing low‐spin, pseudotetrahedral FeI sites compatible with S2? as a ligand was previously unknown.  相似文献   

11.
We report the synthesis of the novel heterometallic complex [Fe3Cr(L)2(dpm)6]?Et2O ( Fe3CrPh ) (Hdpm=dipivaloylmethane, H3L=2‐hydroxymethyl‐2‐phenylpropane‐1,3‐diol), obtained by replacing the central iron(III) atom by a chromium(III) ion in an Fe4 propeller‐like single‐molecule magnet (SMM). Structural and analytical data, high‐frequency EPR (HF‐EPR) and magnetic studies indicate that the compound is a solid solution of chromium‐centred Fe3Cr (S=6) and Fe4 (S=5) species in an 84:16 ratio. Although SMM behaviour is retained, the |D| parameter is considerably reduced as compared with the corresponding tetra‐iron(III) propeller (D=?0.179 vs. ?0.418 cm?1), and results in a lower energy barrier for magnetisation reversal (Ueff/kB=7.0 vs. 15.6 K). The origin of magnetic anisotropy in Fe3CrPh has been fully elucidated by preparing its Cr‐ and Fe‐doped Ga4 analogues, which contain chromium(III) in the central position (c) and iron(III) in two magnetically distinct peripheral sites (p1 and p2). According to HF‐EPR spectra, the Cr and Fe dopants have hard‐axis anisotropies with Dc=0.470(5) cm?1, Ec=0.029(1) cm?1, Dp1=0.710(5) cm?1, Ep1=0.077(3) cm?1, Dp2=0.602(5) cm?1, and Ep2=0.101(3) cm?1. Inspection of projection coefficients shows that contributions from dipolar interactions and from the central chromium(III) ion cancel out almost exactly. As a consequence, the easy‐axis anisotropy of Fe3CrPh is entirely due to the peripheral, hard‐axis‐type iron(III) ions, the anisotropy tensors of which are necessarily orthogonal to the threefold molecular axis. A similar contribution from peripheral ions is expected to rule the magnetic anisotropy in the tetra‐iron(III) complexes currently under investigation in the field of molecular spintronics.  相似文献   

12.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

13.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

14.
This study deals with the unprecedented reactivity of dinuclear non‐heme MnII–thiolate complexes with O2, which dependent on the protonation state of the initial MnII dimer selectively generates either a di‐μ‐oxo or μ‐oxo‐μ‐hydroxo MnIV complex. Both dimers have been characterized by different techniques including single‐crystal X‐ray diffraction and mass spectrometry. Oxygenation reactions carried out with labeled 18O2 unambiguously show that the oxygen atoms present in the MnIV dimers originate from O2. Based on experimental observations and DFT calculations, evidence is provided that these MnIV species comproportionate with a MnII precursor to yield μ‐oxo and/or μ‐hydroxo MnIII dimers. Our work highlights the delicate balance of reaction conditions to control the synthesis of non‐heme high‐valent μ‐oxo and μ‐hydroxo Mn species from MnII precursors and O2.  相似文献   

15.
In the title compound, (1,4,7,10,13,16‐hexa­oxacyclo­octa­decane‐1κ6O)‐μ‐oxo‐1:2κ2O:O‐hexa­kis(tetra­hydro­borato)‐1κ3H;2κ2H;2κ2H;2κ3H;2κ3H;2κ3H‐diuranium(IV), [U2(BH4)6O(C12H24O6)], one of the U atoms (U1), located at the centre of the crown ether moiety, is bound to the six ether O atoms, and also to a tridentate tetra­hydro­borate group and a μ‐oxo atom in axial positions. The other U atom (U2) is bound to the same oxo group and to five tetra­hydro­borate moieties, three of them tridentate and the other two bidentate. The two metal centres are bridged by the μ‐oxo atom in an asymmetric fashion, thus giving the species (18‐crown‐6)(κ3‐BH4)U=(μ‐O)—U(κ3‐BH4)32‐BH4)2, in which the U1=O and U2—O bond lengths to the μ‐O atom [1.979 (5) and 2.187 (5) Å, respectively] are indicative of the presence of positive and negative partial charges on U1 and U2, respectively.  相似文献   

16.
The novel PtII–dibenzo‐18‐crown‐6 (DB18C6) title complex, μ‐[tetrakis­(thio­cyanato‐S)­platinum(II)]‐N:N′‐bis{[2,5,8,­15,18,21‐hexa­oxa­tri­cyclo­[20.4.0.19,14]­hexa­cosa‐1(22),9(14),10,12,23,25‐hexaene‐κ6O]­potassium(I)}, [K(C20H24O6)]2[Pt(SCN)4], has been isolated and characterized by X‐ray diffraction analysis. The structure analysis shows that the complex displays a quasi‐one‐dimensional infinite chain of two [K(DB18C6)]+ complex cations and a [Pt(SCN)4]2? anion, bridged by K+?π interactions between adjacent [K(DB18C6)]+ units.  相似文献   

17.
The structures and energies of the electronic ground states of the FeS0/?, FeS20/?, Fe2S20/?, Fe3S40/?, and Fe4S40/? neutral and anionic clusters have been computed systematically with nine computational methods in combination with seven basis sets. The computed adiabatic electronic affinities (AEA) have been compared with available experimental data. Most reasonable agreements between theory and experiment have been found for both hybrid B3LYP and B3PW91 functionals in conjugation with 6‐311+G* and QZVP basis sets. Detailed comparisons between the available experimental and computed AEA data at the B3LYP/6‐311+G* level identified the electronic ground state of 5Δ for FeS, 4Δ for FeS?, 5B2 for FeS2, 6A1 for FeS2?, 1A1 for Fe2S2, 8A′ for Fe2S2?, 5A′′ for Fe3S4, 6A′′ for Fe3S4?, 1A1 for Fe4S4, and 1A2 for Fe4S4?. In addition, Fe2S2, Fe3S4, Fe3S4?, Fe4S4, and Fe4S4? are antiferromagnetic at the B3LYP/6‐311+G* level. The magnetic properties are discussed on the basis of natural bond orbital analysis.  相似文献   

18.
As an important class of heterocyclic compounds, 1,3,4‐thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4‐thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I) π‐complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single‐crystal X‐ray diffraction and IR spectroscopy. The compounds are bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ‐aqua‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ‐aqua‐(hexafluorosilicato)bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ‐benzenesulfonato‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine (Mepeta ), C6H9N3S, was also structurally characterized. Both Mepeta and 5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine (Pesta ) (denoted L ) reveal a strong tendency to form dimeric {Cu2L 2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta )2}2+ unit allows the CuI atom site to be split into two positions with different metal‐coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O‐atom and hexafluorosilicate F‐atom coordination, resulting in the rare case of a direct CuI…FSiF52− interaction. Extensive three‐dimensional hydrogen‐bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen‐bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.  相似文献   

19.
Mono(nucleobase) complexes of the general composition cis‐[PtCl2(NH3)L] with L=1‐methylcytosine, 1‐MeC ( 1 a ) and L=1‐ethyl‐5‐methylcytosine, as well as trans‐[PtX2(NH3)(1‐MeC)] with X=I ( 5 a ) and X=Br ( 5 b ) have been isolated and were characterized by X‐ray crystallography. The Pt coordination occurs through the N3 atom of the cytosine in all cases. The diaqua complexes of compounds 1 a and 5 a , cis‐[Pt(H2O)2(NH3)(1‐MeC)]2+ and trans‐[Pt(H2O)2(NH3)(1‐MeC)]2+, display a rich chemistry in aqueous solution, which is dominated by extensive condensation reactions leading to μ‐OH‐ and μ‐(1‐MeC?N3,N4)‐bridged species and ready oxidation of Pt to mixed‐valence state complexes as well as diplatinum(III) compounds, one of which was characterized by X‐ray crystallography: h,t‐[{Pt(NH3)2(OH)(1‐MeC?N3,N4)}2](NO3)2 ? 2 [NH4](NO3) ? 2 H2O. A combination of 1H NMR spectroscopy and ESI mass spectrometry was applied to identify some of the various species present in solution and the gas phase, respectively. As it turned out, mass spectrometry did not permit an unambiguous assignment of the structures of +1 cations due to the possibilities of realizing multiple bridging patterns in isomeric species, the occurrence of different tautomers, and uncertainties regarding the Pt oxidation states. Additionally, compound 1 a was found to have selective and moderate antiproliferative activity for a human cervix cancer line (SISO) compared to six other human cancer cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号