首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of monoselenoquinone and diselenoquinone π complexes, [(η6p‐cymene)Ru(η4‐C6R4SeE)] (R=H, E=Se ( 6 ); R=CH3, E=Se ( 7 ); R=H, E=O ( 8 )), as well as selenolate π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Se)][SbF6] (R=H ( 9 ); R=CH3 ( 10 )), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated‐arene and hydroxymonochlorinated‐arene ruthenium complexes [(η6p‐cymene)Ru(C6R4XCl)][SbF6]2 (R=H, X=Cl ( 1 ); R=CH3, X=Cl ( 2 ); R=H, X=OH ( 3 )) as well as the monochlorinated π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Cl)][SbF6]2 (R=H ( 4 ); R=CH3 ( 5 )). The X‐ray crystallographic structures of two of the compounds, [(η6p‐cymene)Ru(η4‐C6Me4Se2)] ( 7 ) and [(η6p‐cymene)Ru(η4‐C6H4SeO)] ( 8 ), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.  相似文献   

2.
The reactions of two diaminotriazine ligands 2,4‐diamino‐6‐(2‐pyridyl)‐1,3,5‐triazine (2‐pydaT) and 6‐phenyl‐2,4‐diamino‐1,3,5‐triazine (PhdaT) with ruthenium–arene precursors led to a new family of ruthenium(II) compounds that were spectroscopically characterized. Four of the complexes were cationic, with the general formula [(η6‐arene)Ru(κ2N,N‐2‐pydaT)Cl]X (X=BF4, TsO; arene=p‐cymene: 1.BF4 , 1.TsO arene=benzene: 2.BF4 , 2.TsO ). The neutral cyclometalated complex [(η6p‐cymene)Ru(κ2C,N‐PhdaT*)Cl] ( 3 ) was also isolated. The structures of complexes 2.BF4 and 3.H2O were determined by X‐ray diffraction. Complex 1.BF4 underwent a partial reversible‐aquation process in water. UV/Vis and NMR spectroscopic measurements showed that the reaction was hindered by the addition of NaCl and was pH‐controlled in acidic solution. At pH 7.0 (sodium cacodylate) Ru–Cl complex 1.BF4 was the only species present in solution, even at low ionic strength. However, in alkaline medium (KOH), complex 1.BF4 underwent basic hydrolysis to afford a Ru–OH complex ( 5 ). Fluorimetric studies revealed that the interaction of complex 1.BF4 with DNA was not straightforward; instead, its main features were closely linked to ionic strength and to the [DNA]/complex ratio. The bifunctional complex 1.BF4 was capable of interacting concurrently through both its p‐cymene and 2‐pydaT groups. Cytotoxicity and genotoxicity studies showed that, contrary to the expected behavior, the complex species was biologically inactive; the formation of a Ru–OH complex could be responsible for such behavior.  相似文献   

3.
A new class of half‐sandwich (η6p‐cymene) ruthenium(II) complexes supported by 2‐aminofluorene derivatives [Ru(η6p‐cymene)(Cl)(L)] ( L  = 2‐(((9H‐fluoren‐2‐yl)imino)methyl)phenol ( L 1 ), 2‐(((9H‐fluoren‐2‐yl)imino)methyl)‐3‐methoxyphenol ( L 2 ), 1‐(((9H‐fluoren‐2‐yl)imino)methyl)naphthalene‐2‐ol ( L 3 ) and N‐((1H‐pyrrol‐2‐yl)methylene)‐9H‐fluorene‐2‐amine ( L 4 )) were synthesized. All compounds were fully characterized by analytical and spectroscopic techniques (IR, UV–Vis, NMR) and also by mass spectrometry. The solid state molecular structures of the complexes [Ru(η6p‐cymene)(Cl)(L2)], [Ru(η6p‐cymene)(Cl)(L3)] and [Ru(η6p‐cymene)(Cl)(L4)] revealed that the 2‐aminofluorene and p‐cymene moieties coordinate to ruthenium(II) in a three‐legged piano‐stool geometry. The synthesized complexes were used as catalysts for the dehydrogenative coupling of benzyl alcohol with a range of amines (aliphatic, aromatic and heterocyclic). The reactions were carried out under thermal heating, ultrasound and microwave assistance, using solvent or solvent free conditions, and the catalytic performance was optimized regarding the solvent, the type of base, the catalyst loading and the temperature. Moderately high to very high isolated yields were obtained using [Ru(η6p‐cymene)(Cl)(L4)] at 1 mol%. In general, microwave irradiation produced better yields than the other two techniques irrespective of the nature of the substituents.  相似文献   

4.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

5.
An organometallic salt composed of a new cationic p‐cymene ruthenium chloro complex containing a chelating benzaldehyde semicarbazone ligand and of the known anionic p‐cymene ruthenium trichloro complex, [(η6p‐cymene)Ru(bzsc)Cl]+[(η6p‐cymene)RuCl3] ( 1 ) (bzsc = benzaldehyde semicarbazone) was synthesized and further characterized by IR, 1H NMR, and UV/Vis spectroscopy HR‐ESI mass spectrometry, and elemental analysis. The single‐crystal structure of 1 was also determined. The in vitro anticancer activities of the complex was evaluated against three human cancer cell lines (SGC‐7901, BEL‐7404 and CNE‐1), and the IC50 values were 20.7, 71.1 and 42.6 μM, respectively.  相似文献   

6.
In the title compound, (1,4,7,10,13,16‐hexa­oxacyclo­octa­decane‐1κ6O)‐μ‐oxo‐1:2κ2O:O‐hexa­kis(tetra­hydro­borato)‐1κ3H;2κ2H;2κ2H;2κ3H;2κ3H;2κ3H‐diuranium(IV), [U2(BH4)6O(C12H24O6)], one of the U atoms (U1), located at the centre of the crown ether moiety, is bound to the six ether O atoms, and also to a tridentate tetra­hydro­borate group and a μ‐oxo atom in axial positions. The other U atom (U2) is bound to the same oxo group and to five tetra­hydro­borate moieties, three of them tridentate and the other two bidentate. The two metal centres are bridged by the μ‐oxo atom in an asymmetric fashion, thus giving the species (18‐crown‐6)(κ3‐BH4)U=(μ‐O)—U(κ3‐BH4)32‐BH4)2, in which the U1=O and U2—O bond lengths to the μ‐O atom [1.979 (5) and 2.187 (5) Å, respectively] are indicative of the presence of positive and negative partial charges on U1 and U2, respectively.  相似文献   

7.
Treatment of a range of bis(thiourea) ligands with inert organometallic transition‐metal ions gives a number of novel complexes that exhibit unusual ligand binding modes and significantly enhanced anion binding ability. The ruthenium(II) complex [Ru(η6p‐cymene)(κS,S′,N‐ L3 ?H)]+ ( 2 b ) possesses juxtaposed four‐ and seven‐membered chelate rings and binds anions as both 1:1 and 2:1 host guest complexes. The pyridyl bis(thiourea) complex [Ru(η6p‐cymeme)(κS,S′,Npy‐ L4 )]2+ ( 4 ) binds anions in both 1:1 and 1:2 species, whereas the free ligand is ineffective because of intramolecular NH???N hydrogen bonding. Novel palladium(II) complexes with nine‐ and ten‐membered chelate rings are also reported.  相似文献   

8.
A ditopic benzobis(carbene) ligand precursor was prepared that contained a chelating pyridyl moiety to ensure co‐planarity of the carbene ligand and the coordination plane of a bound octahedral metal center. Bimetallic ruthenium complexes comprising this ditopic ligand [L4Ru‐C,N‐bbi‐C,N‐RuL4] were obtained by a transmetalation methodology (C,N‐bbi‐C,N=benzobis(N‐pyridyl‐N′‐methyl‐imidazolylidene). The two metal centers are electronically decoupled when the ruthenium is in a pseudotetrahedral geometry imparted by a cymene spectator ligand (L4=[(cym)Cl]). Ligand exchange of the Cl?/cymene ligands for two bipyridine or four MeCN ligands induced a change of the coordination geometry to octahedral. As a consequence, the ruthenium centers, separated through space by more than 10 Å, become electronically coupled, which is evidenced by two distinctly different metal‐centered oxidation processes that are separated by 134 mV (L4=[(bpy)2]; bpy=2,2′‐bipyridine) and 244 mV (L4=[(MeCN)4]), respectively. Hush analysis of the intervalence charge‐transfer bands in the mixed‐valent species indicates substantial valence delocalization in both complexes (delocalization parameter Γ=0.41 and 0.37 in the bpy and MeCN complexes, respectively). Spectroelectrochemical measurements further indicated that the mixed‐valent RuII/RuIII species and the fully oxidized RuIII/RuIII complexes gradually decompose when bound to MeCN ligands, whereas the bpy spectators significantly enhance the stability. These results demonstrate the efficiency of carbenes and, in particular, of the bbi ligand scaffold for mediating electron transfer and for the fabrication of molecular redox switches. Moreover, the relevance of spectator ligands is emphasized for tailoring the degree of electronic communication through the benzobis(carbene) linker.  相似文献   

9.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The title complex, di‐μ‐chloro‐bis­[chloro­(η6p‐cymene)ruthenium(II)]–9H‐carbazole (1/2), [Ru2Cl4(C10H14)2]·2C12H9N, is composed of one [RuCl26p‐cymene)]2 and two 9H‐carbazole mol­ecules. There are one‐half of a dinuclear complex and one 9H‐carbazole mol­ecule per asymmetric unit. In the dinuclear complex, each of the two crystallographically equivalent Ru atoms is in a pseudo‐tetra­hedral environment, coordinated by a terminal Cl atom, two bridging Cl atoms and the aromatic hydro­carbon, which is linked in a η6 manner; the Ru⋯Ru separation is 3.688 (3) Å. The title complex has a crystallographic centre of symmetry located at the mid‐point of the Ru⋯Ru line. Inter­molecular N—H⋯Cl and π–π stacking inter­actions are observed. These inter­actions form a four‐pointed star‐shaped ring and one‐dimensional linear chains of edge‐fused rings running parallel to the [100] direction, which stabilize the crystal packing.  相似文献   

11.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

12.
A series of novel ruthenium(II)–cymene complexes ( 1 – 8 ) containing substituted pyridyl–thiazole ligands, [Ru(η6p‐cymene)(L)Cl]Cl (L = N,N‐chelating derivatives), have been synthesized and characterized using elemental analysis, infrared, 1H NMR and 13C NMR spectroscopies and mass spectrometry. All these complexes not only display marked cytotoxicity in vitro against three different human cancer cell lines (HeLa, A549 and MDA‐MB‐231), but also exhibit promising anti‐metastatic activity at sub‐cytotoxic concentrations. Cell cycle analysis shows that the ruthenium(II) complex‐induced growth inhibition was mainly caused by S‐phase cell cycle arrest. Further protein level analysis suggests that compound 5 may exert antitumor activity via a p53‐independent mechanism.  相似文献   

13.
Areneruthenium(II) compounds [Ru(p‐cym)Cl2{κPiPrP(CH2CH2OMe)2}], 3 , and [Ru(arene)Cl2{κP‐RP(CH2CO2Me)2}] 4 – 7 (arene=p‐cym (=1‐methyl‐4‐isopropylbenzene), mes (=1,3,5‐trimethylbenzene); R=iPr, tBu) were prepared from the dimers [Ru(arene)Cl2]2 and the corresponding functionalized phosphine. Treatment of 6 and 7 with 1 equiv. of AgPF6 affords the monocationic complexes [Ru(mes)Cl{κ2P,O‐RP(CH2C(O)OMe)(CH2CO2Me)}]PF6, 10 and 11 , while the related reaction of 5 – 7 with 2 equiv. of AgPF6 produces the dicationic compounds [Ru(p‐cym){κ3P,O,O‐tBuP(CH2C(O)OMe)2}](PF6)2 ( 12 ) and [Ru(mes){κ3P,O,O‐RP(CH2C(O)OMe)2}](PF6)2, 13 and 14 . Partial hydrolysis of one hexafluorophosphate anion of 12 – 14 leads to the formation of [Ru(arene){κ2P,O‐RP(CH2C(O)OMe)(CH2CO2Me)}(κO‐O2PF2)]PF6, 15 – 17 , of which 17 (arene=mes; R=tBu) has been characterized by X‐ray crystallography. Compounds 13 and 14 react with 2 equiv. of KOtBu in tBuOH/toluene to give the unsymmetrical complexes [Ru(mes){κ3P,C,O‐RP(CHCO2Me)(CH=C(O)OMe)}], 18 and 19 , containing both a five‐membered phosphinoenolate and a three‐membered phosphinomethanide ring. The molecular structure of compound 18 has been determined by X‐ray structure analysis. The neutral bis(carboxylate)phosphanidoruthenium(II) complexes [Ru(arene){κ3P,O,O‐RP(CH2C(O)O)2}], 20 – 23 are obtained either by hydrolysis of 18 and 19 , or by stepwise treatment of 4 and 5 with KOtBu and basic Al2O3. Novel tripodal chelating systems are generated via insertion reactions of 19 with PhNCO and PhNCS.  相似文献   

14.
Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2Ru Sn Trip] ( 1 ; IXy=1,3‐bis(2,6‐dimethylphenyl)imidazol‐2‐ylidene; Cp*=η5‐C5Me5; Trip=2,4,6‐iPr3C6H2) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β‐unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2RuSn(κ2‐O,O‐OCPhCPhO)Trip] ( 2 ) and [Cp*(IXy)(H)2RuSn(κ2‐O,C‐OCPhCHCHPh)Trip] ( 3 ), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin‐substituted ketene complex [Cp*(IXy)(H)2RuSn(OC2H5)(CHCO)Trip] ( 4 ), which is most likely a decomposition product from the putative ruthenium‐substituted stannene complex. The isolation of a ruthenium‐substituted stannene [Cp*(IXy)(H)2RuSn(Flu)Trip] ( 5 ) and stanna‐imine [Cp*(IXy)(H)2RuSn(κ2‐N,O‐NSO2C6H4Me)Trip] ( 6 ) complexes was achieved by treatment of 1 with 9‐diazofluorene and tosyl azide, respectively.  相似文献   

15.
Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2Ru? Sn? Trip] ( 1 ; IXy=1,3‐bis(2,6‐dimethylphenyl)imidazol‐2‐ylidene; Cp*=η5‐C5Me5; Trip=2,4,6‐iPr3C6H2) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β‐unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2RuSn(κ2‐O,O‐OCPhCPhO)Trip] ( 2 ) and [Cp*(IXy)(H)2RuSn(κ2‐O,C‐OCPhCHCHPh)Trip] ( 3 ), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin‐substituted ketene complex [Cp*(IXy)(H)2RuSn(OC2H5)(CHCO)Trip] ( 4 ), which is most likely a decomposition product from the putative ruthenium‐substituted stannene complex. The isolation of a ruthenium‐substituted stannene [Cp*(IXy)(H)2RuSn(?Flu)Trip] ( 5 ) and stanna‐imine [Cp*(IXy)(H)2RuSn(κ2‐N,O‐NSO2C6H4Me)Trip] ( 6 ) complexes was achieved by treatment of 1 with 9‐diazofluorene and tosyl azide, respectively.  相似文献   

16.
The catalytic activity of ruthenium(IV) ([Ru(η33‐C10H16)Cl2L]; C10H16=2,7‐dimethylocta‐2,6‐diene‐1,8‐diyl, L=pyrazole, 3‐methylpyrazole, 3,5‐dimethylpyrazole, 3‐methyl‐5‐phenylpyrazole, 2‐(1H‐pyrazol‐3‐yl)phenol or indazole) and ruthenium(II) complexes ([Ru(η6‐arene)Cl2(3,5‐dimethylpyrazole)]; arene=C6H6, p‐cymene or C6Me6) in the redox isomerisation of allylic alcohols into carbonyl compounds in water is reported. The former show much higher catalytic activity than ruthenium(II) complexes. In particular, a variety of allylic alcohols have been quantitatively isomerised by using [Ru(η33‐C10H16)Cl2(pyrazole)] as a catalyst; the reactions proceeded faster in water than in THF, and in the absence of base. The isomerisations of monosubstituted alcohols take place rapidly (10–60 min, turn‐over frequency=750–3000 h?1) and, in some cases, at 35 °C in 60 min. The nature of the aqueous species formed in water by this complex has been analysed by ESI‐MS. To analyse how an aqueous medium can influence the mechanism of the bifunctional catalytic process, DFT calculations (B3LYP) including one or two explicit water molecules and using the polarisable continuum model have been carried out and provide a valuable insight into the role of water on the activity of the bifunctional catalyst. Several mechanisms have been considered and imply the formation of aqua complexes and their deprotonated species generated from [Ru(η33‐C10H16)Cl2(pyrazole)]. Different competitive pathways based on outer‐sphere mechanisms, which imply hydrogen‐transfer processes, have been analysed. The overall isomerisation implies two hydrogen‐transfer steps from the substrate to the catalyst and subsequent transfer back to the substrate. In addition to the conventional Noyori outer‐sphere mechanism, which involves the pyrazolide ligand, a new mechanism with a hydroxopyrazole complex as the active species can be at work in water. The possibility of formation of an enol, which isomerises easily to the keto form in water, also contributes to the efficiency in water.  相似文献   

17.
A series of di‐nuclear ruthenium arene complexes with TSC ligands ([(η6p‐cymene)Ru(N1,S‐TSC)]2Cl2, A‐type, 1 and 2 ) and their corresponding analogues ([(η6p‐cymene)Ru(N2,S‐TSC)]2Cl2, B‐type, 3 and 4 ), in which TSCs act as different coordination mode, have been synthesized and structurally characterized by a variety of physical methods. The molecular structures of 1 , 3 and 4 were determined using single‐crystal X‐ray diffraction analysis. The Gibbs free energy of the two examples of the two types of complexes ( 1 and 3 ) and bonding order in their single‐crystals were discussed using density functional theory (DFT) calculations. The compounds were further evaluated for their in vitro antiproliferative activities against several cancerous and HEK‐293 T noncancerous cell lines, and the results indicate that B‐type complexes show stronger cytotoxicity than A‐type complexes. Furthermore, the interactions of the compounds with DNA were investigated by electrophoretic mobility spectrometry studies.  相似文献   

18.
The title compound, [(S)‐2‐(anilino­methyl)­pyrrolidine‐N,N′]‐chloro(η6para‐cymene)­ruthenium(II) chloride, [RuCl‐(C10H14)(C11H16N2)]Cl, has been synthesized by the reaction of [RuCl2(p‐cymene)]2 (p‐cymene is para‐iso­propyl­toluene) with (S)‐2‐(anilinomethyl)­pyrrolidine in triethyl­amine/2‐propanol. The Ru atom is in a pseudo‐tetrahedral environment coordinated by a chloride ligand, the aromatic hydro­carbon is linked in a η6 manner and the amine is linked via its two N atoms. The chloride anion is involved in hydrogen bonding with the di­amine moieties through N—H?Cl interactions, with N?Cl distances of 3.273 (4) and 3.352 (4) Å.  相似文献   

19.
Piano‐stool‐shaped platinum group metal compounds, stable in the solid state and in solution, which are based on 2‐(5‐phenyl‐1H‐pyrazol‐3‐yl)pyridine ( L ) with the formulas [(η6‐arene)Ru( L )Cl]PF6 {arene = C6H6 ( 1 ), p‐cymene ( 2 ), and C6Me6, ( 3 )}, [(η6‐C5Me5)M( L )Cl]PF6 {M = Rh ( 4 ), Ir ( 5 )}, and [(η5‐C5H5)Ru(PPh3)( L )]PF6 ( 6 ), [(η5‐C5H5)Os(PPh3)( L )]PF6 ( 7 ), [(η5‐C5Me5)Ru(PPh3)( L )]PF6 ( 8 ), and [(η5‐C9H7)Ru(PPh3)( L )]PF6 ( 9 ) were prepared by a general method and characterized by NMR and IR spectroscopy and mass spectrometry. The molecular structures of compounds 4 and 5 were established by single‐crystal X‐ray diffraction. In each compound the metal is connected to N1 and N11 in a k2 manner.  相似文献   

20.
The simultaneous crystallization of different polymorphs, i.e. concomitant polymorphism, is a phenomenon which, when properly recognized and studied, can provide useful information for a variety of disciplines. It is rare for ruthenium complexes, although it has been observed. In the synthesis of the ruthenium(II) complex chlorido(η6p‐cymene)(dimethyl 2,2′‐bypyridine‐4,5‐dicarboxylate‐κ2N,N′)ruthenium(II) hexafluoridophosphate, [RuCl(C10H14)(C14H12N2O4)]PF6, concomitant polymorphs were crystallized under the same conditions. The colour of both crystals was orange, but the shapes, as well as the orientation of the p‐cymene and methoxycarbonyl groups, were different. The crystal structures of both isomers show approximately the same bond lengths. In the asymmetric unit, there is one cation and one anion. Due to the absence of strong hydrogen bonds, only weak intermolecular interactions were observed. The Hirshfeld surface and two‐dimensional fingerprint plots of both isomers satisfactorily explain the difference in the melting points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号