首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The synthesis of D,L‐α‐tocopherol from trimethylhydroquinone and isophytol using the Brønsted acidic SO3H‐functionalized ionic liquids as catalysts was explored. The catalytic activities of the SO3H‐functionalized ionic liquids were dependent on their anions. The yield of D,L‐α‐tocopherol also depended on the solvent, which was the reaction medium. A yield of 94.3% was obtained using the SO3H‐functionalized ionic liquid with [BF4 ?] anion as catalyst in propylene carbonate/heptane. The reaction mixture exhibited good biphasic behaviors, so that the produced D,L‐α‐tocopherol could be separated by decantation. The SO3H‐functionalized ionic liquids could be reused after the removal of water.  相似文献   

2.
Synthesis of novel poly(ionic liquid)s, namely, poly(1‐vinyl‐3‐alkylimidazolium hydrogen carbonate)s, denoted as poly([NHC(H)][HCO3])s or PVRImHCO3, where R is an alkyl group (R = ethyl, butyl, phenylethyl, dodecyl), is described. Two distinct synthetic routes were explored. The first method is based on the free‐radical polymerization (FRP) of 1‐vinyl‐3‐alkylimidazolium monomers featuring a hydrogen carbonate counter anion (HCO3?), denoted as VRImHCO3. The latter monomers were readily synthesized by alkylation of 1‐vinylimidazole (VIm), followed by direct anion exchange of 1‐vinyl‐3‐alkylimidazolium bromide monomers (VRImBr), using potassium hydrogen carbonate (KHCO3) in methanol at room temperature. Alternatively, the same anion exchange method could be applied onto FRP‐derived poly(1‐vinyl‐3‐alkylimidazolium bromide) precursors (PVRImBr). All PVRImHCO3 salts proved air stable and could be manipulated without any particular precautions. They could serve as polymer‐supported precatalysts to generate polymer‐supported N‐heterocyclic carbenes, referred to as poly(NHC)s, formally by a loss of “H2CO3” (H2O +CO2) in solution. This was demonstrated through selected organocatalyzed reactions of molecular chemistry, known as being efficiently mediated by molecular NHC catalysts, including benzoin condensation, transesterification and cyanosilylation of aldehyde. Of particular interest, recycling of the polymer‐supported precatalysts was possible by re‐carboxylation of in situ generated poly(NHC)s. Organocatalyzed reactions could be performed with excellent yields, even after five catalytic cycles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4530–4540  相似文献   

3.
The IR and Raman spectra and conformations of the ionic liquid 1‐ethyl‐3‐methyl‐1H‐imidazolium tetrafluoroborate, [EMIM] [BF4] ( 6 ), were analyzed within the framework of scaled quantum mechanics (SQM). It was shown that SQM successfully reproduced the spectra of the ionic liquid. The computations revealed that normal modes of the EMIM+?BF ion pair closely resemble those of the isolated ions EMIM+ and BF , except for the antisymmetric BF stretching vibrations of the anion, and the out‐of‐plane and stretching vibrations of the H? C(2) moiety of the cation. The most plausible explanation for the pronounced changes of the latter vibrations upon ion‐pair formation is the H‐bonding between H? C(2) and BF . However, these weak H‐bonds are of minor importance compared with the Coulomb interactions between the ions that keep them closely associated even in dilute CD2Cl2 solutions. According to the ‘gas‐phase’ computations, in these associates, the BF anion is positioned over the imidazolium ring of the EMIM+ cation and has short contacts not only with the H? C(2) of the latter, but also with a proton of the Me? N(3) group.  相似文献   

4.
Accumulation of electroactive anions into a silicate film with covalently bonded room temperature ionic liquid film deposited on an indium tin oxide electrode was studied and compared with an electrode modified with an unconfined room temperature ionic liquid. A thin film containing imidazolium cationic groups was obtained by sol‐gel processing of the ionic liquid precursor 1‐methyl‐3‐(3‐trimethoxysilylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide together with tetramethylorthosilicate on the electrode surface. Profilometry shows that the obtained film is not smooth and its approximate thickness is above 1 μm. It is to some extent permeable for a neutral redox probe – 1,1′‐ferrocene dimethanol. However, it acts as a sponge for electroactive ions like Fe(CN)63?, Fe(CN)64? and IrCl63?. This effect can be traced by cyclic voltammetry down to a concentration equal to 10?7 mol dm?3. Some accumulation of the redox active ions also occurs at the electrode modified with the ionic liquid precursor, but the voltammetric signal is significantly smaller compare with the bare electrode. The electrochemical oxidation of the redox liquid t‐butyloferrocene deposited on silicate confined ionic liquid film is followed by the expulsion of the electrogenerated cation into an aqueous solution. On the other hand, the voltammetry obtained with the electrode modified with t‐butyloferrocene solution in the ionic liquid precursor exhibits anion sensitive voltammetry. This is explained by anion insertion into the unconfined ionic liquid deposit following t‐butylferricinium cation formation.  相似文献   

5.
Herein, one water‐soluble functionalized ionic liquid, 1‐butyl‐3‐methylimidazolium dodecyl sulfate ([BMIm+][C12H25SO?4]), was designed and its superiorities either used as supporting electrolytes or as additives for successful establishment of MEKC with electrochemiluminescence (ECL) detection (MEKC‐ECL) method were investigated. Compared with the common supporting electrolytes such as phosphate solution, 1‐butyl‐3‐methylimidazolium dodecyl sulfate solution used as running buffers led to greatly enhanced ECL intensities and column efficiencies for negative targets, a little increase for neutral‐charge ones while maintained nearly unchanged for positive ones due to the electrostatic forces between the large cation BMIm+ and the solutes and the hydrophobic interactions resulting from the large anion C12H25SO?4. Moreover, resolution efficiency between analytes was significantly improved. As the existence of ionic liquid moiety, BMIm+, accelerated the electron transfer at the electrode surface, the poisoning effect of long chain C12H25SO?4 on the electrode surface was eliminated and reproducible ECL intensities with relative standard derivation of 1.02% (n=6) were obtained. The proposed novel MEKC‐ECL system was again validated by the baseline separated two similar amino acids of proline and hydroxyproline with lower detection limits of 0.5 and 0.8 μM (S/N=3), respectively.  相似文献   

6.
In this work, the structures of the –SO3H functionalized acidic ionic liquid 1-(3-sulfonic acid) propyl-3-methylimidazolium hydrogen sulfate ([C3SO3Hmim]HSO4), including its precursor compound (zwitterion), cation, and cation–anion ion-pairs, were optimized systematically by the DFT theory at B3LYP/6-311++G** level, and their most stable geometries were obtained. The calculation results indicated that a great tendency to form strong intramolecular hydrogen bonds was present in the zwitterion, and this tendency was weakened in the cation that was the protonation product of zwitterion. The intramolecular hydrogen bonds and intermolecular hydrogen bonds coexisted in the ionic liquid, and they played an important role in the stability of the systems. The strongest interaction in the ionic liquid was found between the anion and the functional group. The transition state research and the intrinsic reaction coordinate analysis of the hydrogen transfer reaction showed that, when the cation and the anion interacted near the functional group by double O–H···O hydrogen bonds, the ionic liquid was inclined to exist in a form of the zwitterion and H2SO4.  相似文献   

7.
Bimetallic iron–ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL‐SO3H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff–Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL‐SO3H materials opens a general approach to multifunctional catalytic systems (MM′@SILP+IL‐func).  相似文献   

8.
To extensively explore the influence of anion structure on the physical properties of poly(ionic liquid)s (PILs) a series of PILs having main‐chain 1,2,3‐triazolium cations was synthesized via copper(I)‐catalyzed azide‐alkyne 1,3‐dipolar cycloaddition (CuAAC) followed by N‐alkylation with iodomethane and anion metathesis with different metal salts, that is, Li(CF3SO2)2N, Li(CF3CF2SO2)2N, K(FSO2)2N, K(CF3SO2)N(CN), Ag(CN)2N, and sodium 4,5‐dicyano‐1,2,3‐triazolate. To isolate the effect of anion on physical properties of PILs, a common iodide precursor was used to maintain constant the average degree of polymerization (DPn) and chain dispersity. Detailed structure/properties relationship analyses demonstrated a lack of correlation between anion chemical structure, ionic conductivity, and glass transition temperatures. Among synthesized series, the PIL derivative having bis(trifluoromethylsulfonyl)imide counter anion showed the best compromise in performance: low glass transition temperature (Tg = ?68 °C), high thermal stability (Tonset = 340 °C) and superior ionic conductivity (σDC = 8.5 × 10? 6 S/cm at 30 °C), which makes it an interesting candidate for various key modern electrochemical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2191–2199  相似文献   

9.
Thermal decomposition onset temperatures have been measured for a total of 24 methylimidazolium, triethanolammonium, and pyridinium type sulfonic acid groups functionalized Brönsted acidic ionic liquids with Cl?, Br?, SO4 2?, PO4 3?, BF4 ? , CH3CO2 ?, and CH3SO3 ? anions, using thermogravimetric analysis. Thermal stabilities of these sulfonic acid group functionalized ionic liquids decreases in the order, methylimidazolium > triethanolammonium > pyridinium. The methylimidazolium, pyridinium, and triethanolammonium ionic liquids investigated showed decomposition onset temperatures (air) in the 213–353, 167–240, and 230–307 °C ranges, respectively. Additionally, the decomposition temperatures of these ionic liquids are highly dependent on the nature of the anion.  相似文献   

10.
In this work, a series of novel acidic polymerized ionic liquids were used as heterogeneous catalyst for alkylation of o‐Xylene with styrene. And the effect of the amount of initiator and the type of acid used for ion exchange on catalyst structure and the catalytic performance of catalysts for alkylation were studied thoroughly. The experiment results show: when the percentage of the amount of initiator in the total material is 3%, the polymerized ionic liquid catalyst MPM‐SO3H‐[C3V][SO3CF3] has the most uniform with a specific surface area of 97.30 m2/g and a pore volume of 0.35 cm3/g. Benefiting from the unique structure features, MPM‐SO3H‐[C3V][SO3CF3] manifested an excellent catalytic performance for alkylation of o‐Xylene with styrene, along with the conversion of styrene was 96.8% and the yield of 1‐Phenyl‐1‐ortho‐xylene ethane was 94.7%. Therefore, this work provides a novel reference to the synthesis of polymerized ionic liquids and clearly explains the advantage of novel acidic polymerized ionic liquids on alkylation.  相似文献   

11.
The solvothermal reactions of Ti(OiPr)4 in alcohol using ionic liquid as additive were investigated. In the presence of [BMIM][Cl], [BMIM][Br], [BMIM][NTf2], [BMIM][SO3Me], [BMIM][SO4Me], or [BMIM][OTf] (BMIM = 1‐Butyl‐3‐methylimidazolium), pure anatase nanoparticles were obtained. The controlled hydrolysis of Ti(OiPr)4 in the presence of ionic liquids to form titanium oxo clusters plays a key role in the formation of anatase nanostructures, and ionic liquids can be repeatedly used to synthesise anatase nanoparticles. However, in the presence of [BMIM][PF6], [BMIM]2[Ti(OH)6] was obtained by an anion exchange reaction.  相似文献   

12.
The C?D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6]DMSO) and the C2?H bond stretching vibrations of 1,1,1,5,5,5‐hexafluoropentane‐2,4‐dione (hfac) ligand in anion are chosen as probes to elucidate the solvent–solute interaction between chelate‐based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10mim]+ and anion [Mn(hfac)3]? of the ILs leads to the blue‐shift of the C?D stretching vibrations of DMSO. The C2?H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate‐based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate‐based ILs are in different microstructure environment in the solution.  相似文献   

13.
The amino acid ionic liquid tetrabutylammonium asparaginate (TBAAsp) was immobilized on titanomagnetite (Fe3?xTixO4) nanoparticles in a facile one‐pot process using an organosilane compound (TMSP) as spacer. The modified Fe3?xTixO4@TMSP@TBAAsp magnetic nanoparticles were characterized using Fourier transform spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. The resulting analytical data clearly verified the successful immobilization of the ionic liquid on the magnetic substrate. The magnetic ionic liquid‐based nanoparticles exhibited high catalytic activity in the synthesis of 1,4‐dihydropyrano[2,3‐c]pyrazole derivatives via a one‐pot three‐component reaction under mild reaction conditions. The catalyst was easily recycled and reused for at least six runs without any considerable loss of activity.  相似文献   

14.
By performing density functional theory calculations, we have investigated the Michael addition of acetylacetone to methyl vinyl ketone in the absence and presence of the ionic liquid 1‐butyl‐3‐methylimidazolium hydroxide ([bmIm]OH). In the absence of ionic liquids, acetylacetone is firstly tautomerized to enol form and then takes place Michael addition to methyl vinyl ketone. As in the catalyzed Michael addition reaction, a bmIm+‐OH? ion pair is introduced into the reaction system to model the effect of the ionic liquid environment on the reactivity. The calculated results show that the anion enhances nucleophilic ability of acetylacetone since the OH? anion captures a proton to form an acetylacetone anion‐H2O complex, and the cation improves the electrophilic ability of methyl vinyl ketone by forming intermolecular hydrogen‐bonds. Both the remarkable effects of the cation and anion on the reactivity of reactants promote this reaction, which take place more easily compared with uncatalyzed reaction. The calculated results show that the main product of the Michael addition is in its ketone form. Our study provides a detailed reaction mechanism of Michael addition catalyzed by basic ionic liquid [bmIm]OH and clearly reveal the catalytic role of ionic liquid in important chemical reaction. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

15.
Rhodium nanoparticles immobilized on an acid‐free triphenylphosphonium‐based supported ionic liquid phase (Rh@SILP(Ph3‐P‐NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3‐P‐NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non‐benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3‐P‐NTf2) catalyst opens the way to the production of a wide range of high‐value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin‐derived aromatic ketones.  相似文献   

16.
A Janus silica cage was synthesized by selectively grafting an ionic liquid (IL) and poly‐N‐isopropylacrylamide (PNIPAM) (lower critical solution temperature (LCST)≈32 °C) onto the exterior and interior sides of the mesoporous SiO2 shell. The paramagnetic core inside the cavity is responsible for magnetic collection. The PW12O403? anion is further conjugated onto the IL side by anion exchange. The Janus cage acts as a thermal‐responsive reactor for catalytic oxidization of dibenzothiophene (DBT) in the presence of H2O2. The sulfide in the model oil can be completely decomposed at 25 °C, whilst the oxidative products are more dissoluble in water and preferentially captured inside the Janus cage. The Janus cage reactor could be regenerated at high temperature above 32 °C after releasing the products.  相似文献   

17.
Tungstate ions were successfully loaded onto triazine‐based ionic liquid‐functionalized magnetic nanoparticles through an anion exchange process. The use of triazine core for creating ionic liquid led to the immobilization of high amounts of WO42?. The resulting catalyst showed high activity and selectivity in the oxidation of sulfides to sulfoxides with H2O2 as a green oxidant at room temperature. In addition, due to the presence of ammonium groups in the catalyst structure, water dispersibility of the catalyst was increased. More important, the catalyst was magnetically recovered and reused for up to six runs without any marked decrease of activity and selectivity. Finally, easy gram‐scale oxidation of methylphenyl sulfide as well as fast separation of catalyst and product makes the protocol economical and industrially applicable.  相似文献   

18.
Aqueous–ionic liquid (A–IL) biphasic systems have been examined in terms of deuterated water, acid, and IL cation and anion mutual solubilities in the upper (water‐rich, in mole fraction) and lower phase of aqueous/IL biphasic systems at ambient temperature. The biphasic mixtures were composed of deuterated acids of various concentrations (mainly DCl, DNO3, and DClO4 from 10?2 to 10?4 M ) and five ionic liquids of the imidazolium family with a hydrophobic anion (CF3SO2)2N?, that is, [C1Cnim][Tf2N], (n=2, 4, 6, 8 and 10). The analytical techniques applied were 1H NMR, 19F NMR, Karl–Fischer titration, pH potentiometry for IL cations and anions, and water and acid determination. The effects of the ionic strength (μ=0.1 M NaCl and NaNO3 as well as μ=0.1 M , 0.2 M and 0.4 M NaClO4, according to the investigated acid), the nature of the IL cation, and the nature of the mineral acid on the solubilities of the (D2O, D+, Tf2N?, C1Cnim+) entities in the lower or upper phases were determined. The addition of sodium perchlorate was found to enhance the Tf2N? solubility while inhibiting the solubility of the ionic liquid cation. Differences in IL cation and anion solubilities of up to 42 mM were evidenced. The consequences for the characterization of the aqueous biphasic system, the solvent extraction process of the metal ions, and the ecological impact of the ILs are discussed.  相似文献   

19.
Surface functionalization of magnetic nanoparticles is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. We have conveniently loaded sulfonic acid groups on amino‐functionalized Fe3O4 nanoparticles affording sulfamic acid‐functionalized magnetic Fe3O4 nanoparticles (MNPs/DAG‐SO3H) as an active and stable magnetically separable acidic nanocatalyst, which was characterized using X‐ray diffraction, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, scanning and transmission electron microscopies, vibrating sample magnetometry and elemental analysis. The catalytic activity of MNPs/DAG‐SO3H was probed through one‐pot synthesis of N‐substituted pyrroles from γ‐diketones and primary amines in aqueous phase at room temperature. The heterogeneous catalyst could be recovered easily by applying an external magnet device and reused many times without significant loss of its catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
New ionic liquid sulfonic acid functionalized pyridinium chloride [Pyridine–SO3H]Cl was used for the synthesis of tetrahydrobenzo[b]pyran derivatives by the one‐pot three component condensation reaction of various aldehydes, dimedone and malononitrile at 95 ºC under solvent‐free conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号