首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three oligothiophene dithiols with different numbers of thiophene rings (3, 6 or 9) have been synthesized and characterized. The X‐ray single crystal structures of terthiophene 2 and sexithiophene 5 are reported herein to show the exact molecular lengths, and to explain the difference between their UV‐visible spectra arising from the different packing modes. These dithiols with different chain lengths were then treated with 2‐dodecanethiol‐protected active gold nanoparticles (Au‐NPs) by means of in situ thiol‐to‐thiol ligand exchange in the presence of 1 μm gap Au electrodes. Thus the molecular junctions composed of self‐assembled films were prepared, in which oligothiophene dithiol‐bridged Au‐NPs were attached to two electrodes by means of Au? S bonded contacts. The morphologies and current–voltage (IV) characteristics of these films were studied by SEM and AFM approaches, which suggested that the thickness of the films (3–4 layers) varied within the size of one isolated Au‐NP and typical distance‐dependent semiconductor properties could be observed. Temperature dependent IV measurements for these molecular junctions were performed in which the films served as active elements in the temperature range 6–300 K; classical Arrhenius plots and subsequent linear fits were carried out to give the activation energies (ΔE) of devices. Furthermore, preliminary studies on the photoresponsive properties of these devices were explored at 80, 160, and 300 K, respectively. Physical and photochemical mechanisms were used to explain the possible photocurrent generation processes. To the best of our knowledge, this is the first report in which oligothiophene dithiols act as bridging units to link Au‐NPs, and also the first report about functionalized Au‐NPs exhibiting photoresponse properties in the solid state.  相似文献   

3.
Crystalline thin films of π-conjugated molecules are relevant as the active layers in organic electronic devices. Therefore, materials with enhanced control over the supramolecular arrangement, crystallinity, and thin-film morphology are desirable. Herein, it is reported that hydrogen-bonded substituents serve as additional structure-directing elements that positively affect crystallization, thin-film morphology, and device performance of p-type organic semiconductors. It is observed that a quaterthiophene diacetamide exhibits a denser packing than that of other quaterthiophenes in the single-crystal structure and, as a result, displays enhanced intermolecular electronic interactions. This feature was preserved in crystalline thin films that exhibited a layer-by-layer morphology, with large domain sizes and high internal order. As a result, organic field-effect transistors of these polycrystalline thin films showed mobilities in the range of the best mobility values reported for single-crystalline quaterthiophenes. The use of hydrogen-bonded groups may, thus, provide an avenue for organic semiconducting materials with improved morphology and performance.  相似文献   

4.
Chuanyu Jiang  Wenji Deng 《合成通讯》2013,43(13):2360-2369
For the purpose of developing novel photovoltaic materials, 5,5″-biformyl-2,2′:5′,2″-terthiophene (OHC-3T-CHO) and 5,5″″-biformyl-2,2′:5′,2″:5″,2″′:5″′,2″″-q-uinquethiophene (OHC-5T-CHO) were synthesized. The photovoltaic properties of OHC-3T-CHO and OHC-5T-CHO were studied. We have fabricated two flexible organic photovoltaic devices using OHC-3T-CHO, OHC-5T-CHO, and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). The PET-ITO (indium tin oxides coated with polyethylene terephthalate)/OHC-3T-CHO/PTCDA/Al device has an open circuit voltage (V oc ) of 1.12 V, and photoelectric conversion efficiency (PCE) of 1.00%, whereas the PET-ITO/OHC-5T-CHO/PTCDA/Al device has a V oc of 1.78 V and PCE of 1.08%. Both devices have high V oc (1.12 V and 1.78 V). It is possible that intermolecular hydrogen bonding between the –CHO group of OHC-nT-CHO and the carboxylic dianhydride of PTCDA enhanced the efficiency by promoting forward interfacial electron transfer.  相似文献   

5.
We have prepared a new series of mixed thiophene–pyrrole oligomers to investigate the electronic benefits arising from the combination of these two heterocycles. The oligomers are functionalized with several hexyl and aryl groups to improve both processability and chemical robustness. An analysis of their spectroscopic (absorption and emission), photophysical, electrochemical, solid state, and vibrational properties is performed in combination with quantum‐chemical calculations. This analysis provides relevant information regarding the use of these materials as organic semiconductors. The balance between the high aromatic character of pyrrole and the moderate aromaticity of thiophene allows us to address the impact of the coupling of these heterocycles in conjugated systems. The data are interpreted on the basis of the aromaticity, molecular conformations, ground and excited electronic state structures, frontier orbital topologies and energies, oxidative states, and quinoidal versus aromatic competition.  相似文献   

6.
A series of new highly soluble bispyrrolothiophenes were synthesized from vinyl azides by using transition‐metal‐catalyzed C?H‐bond functionalization. In addition to modifying the substituents present on the end‐pyrrolothiophene moieties, the arene linker in between the two units was also varied. The solution‐state properties and field‐effect‐transistor (FET) electrical behavior of these bispyrrolothiophenes was compared. Our investigations identified that the optical properties and oxidation potential of our compounds were dominated by the pyrrolothiophene unit with a λmax value of approximately 400 nm and oxidation at approximately 1 V. FET devices constructed with thin films of these bispyrrolothiophenes were also fabricated by means of thin‐film solution processing. One of these compounds, a bispyrrolothiophene linked with benzothiodiazole, exhibits a mobility of approximately 0.3 cm2 V?1 s?1 and the Ion/Ioff value is greater than 106.  相似文献   

7.
This work reports the first observation of circularly polarized electroluminescence (CPEL) in thin films of self-organized oligothiophenes. Four new 1,4-phenylene and 9H-carbazole-based oligothiophenes were ad hoc designed to ensure efficient spontaneous formation of chiral supramolecular order. They were easily synthesized and their chiroptical properties in thin films were measured. Circularly polarized luminescence (CPL) spectra revealed glum in the order of 10−2 on a wide wavelengths range, originating from their self-organized chiral supramolecular organization. These molecules have reasonable properties as organic semiconductors and for this reason they can constitute the active layer of circularly-polarized organic light-emitting diodes (CP-OLEDs). Thus, we could investigate directly their electroluminescence (EL) and CPEL, without resorting to blends, but rather in a simple multilayer device with basic architecture. This is the first example of a CP-OLED with active layer made only of a small organic compound.  相似文献   

8.
Three new benzothieno[3,2‐b]thiophene ( BTT ; 1 ) derivatives, which were end‐functionalized with phenyl ( BTT‐P ; 2 ), benzothiophenyl ( BTT‐BT ; 3 ), and benzothieno[3,2‐b]thiophenyl groups ( BBTT ; 4 ; dimer of 1 ), were synthesized and characterized in organic thin‐film transistors (OTFTs). A new and improved synthetic method for BTT s was developed, which enabled the efficient realization of new BTT ‐based semiconductors. The crystal structure of BBTT was determined by single‐crystal X‐ray diffraction. Within this family, BBTT , which had the largest conjugation of the BTT derivatives in this study, exhibited the highest p‐channel characteristic, with a carrier mobility as high as 0.22 cm2 V?1 s?1 and a current on/off ratio of 1×107, as well as good ambient stability for bottom‐contact/bottom‐gate OTFT devices. The device characteristics were correlated with the film morphologies and microstructures of the corresponding compounds.  相似文献   

9.
10.
The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.  相似文献   

11.
朱敏亮  罗皓  王丽萍  于贵  刘云圻 《化学学报》2012,70(15):1599-1603
N,N'-二苯基-1,4-苯二胺为原料, 合成了含硫和氮杂原子的并五苯类似物, 用可见-紫外吸收光谱和电化学测试对这类化合物进行表征, 确定了其光学带隙及轨道能级, 与并五苯相比它们具有低的最高占用分子轨道能级. 得到了三苯并二噻嗪的单晶结构, 分子具有平面结构, 分子间具有强的π…π相互作用和N…S相互作用. 首次将该类并五苯类似物应用于有机薄膜场效应晶体管中, 器件显示好的场效应特性, 迁移率为0.01 cm2·V-1·s-1.  相似文献   

12.
Molecular assemblies (MAs) of oligofurans and oligothiophenes were formed from solutions on various substrates. These films were obtained by alternating deposition of organic chromophores (oligofurans or oligothiophenes) and a palladium salt. These coordination‐based MAs were characterized by UV/Vis spectroscopy, spectroscopic ellipsometry, atomic force microscopy (AFM), X‐ray reflectivity (XRR), X‐ray photoelectron spectroscopy (XPS), and electrochemistry. The MAs exhibit similar electrochemical behavior and their growth and structure are apparently not affected when different organic template layers are used. The density of the MAs is a function of the structure of the molecular component. The oligothiophene density is approximately 50 % higher than that observed for the oligofuran‐based assemblies. The optical and electrochemical properties of the MAs scale linearly with their thickness. The UV/Vis data indicate that upon increasing the film thickness, there is no significant conjugation between the metal‐separated organic chromophores. DFT calculations confirmed that the HOMO–LUMO gap of the surface‐bound oligofuran and oligothiophene metal oligomers do not change significantly upon increasing their chain length. However, electrochemical measurements indicate that the susceptibility of the MAs towards oxidation is dependent on the number of chromophore units.  相似文献   

13.
A series of tetrahedral oligothiophenes bearing n‐hexyl groups at the α‐positions of the terminal thiophene rings, (n‐C6H13(C4H2S)n)4C (Hex‐TnTM; n=1–4), has been synthesized by Kosugi–Migita–Stille coupling as a key reaction. Thanks to the improved solubility afforded by the terminal n‐hexyl groups, the largest homologue (n=4) was successfully obtained. Whereas the smaller derivatives (n=1, 2) were obtained as liquid substances, the larger derivatives (n=3, 4) were obtained as solids. Hex‐T3 TM partially adopts syn conformations between the adjacent thiophene rings in the crystal, probably owing to the packing force. Hex‐T3 TM not only appeared in the crystalline state but also the amorphous state, which was stable to up to 80 °C. Regardless of the terminal groups, the derivatives of n=2 exhibited a broad fluorescence with large Stokes shifts compared to the corresponding linear analogues, thereby suggesting the presence of intramolecular interactions between the bithiophene moieties. Interactions between terthiophene branches was also suggested in the radical cations of Hex‐T3 TM by cyclic voltammetry measurements.  相似文献   

14.
Supramolecular chirality and liquid crystalline OFET : Achiral end‐capped oligothiophenes can be tuned to exhibit supramolecular chirality with unique striped textures showing distinct circular dichroism signals as well as a highly ordered SmE phase that leads to high hole carrier mobility.

  相似文献   


15.
This paper describes the first example of the application of a combination of the Flory–Huggins and Cahn–Hilliard theories to model and simulate microstructure evolution in solution‐processed functional blend layers of organic semiconductors, as used in organic electronics devices. Specifically, the work considers phase separation of the active blend components of organic transistors based on triisopropylsilylpentacene (TIPS‐pentacene) and poly(α‐methylstyrene) (PαMS). By calculation and estimation of relevant physical parameters, it is shown that the vertically phase‐separated structure observed in as‐cast blend layers containing PαMS of a sufficiently high molecular weight (of the order of 102 kDa) evolves via surface‐directed spinodal decomposition. The surface‐directed effect can already be triggered by small differences in substrate– and/or air–interface interaction energies of the separating phases. During phase separation, which commences at the interfaces, bulk features of the TIPS‐enriched phase formed by thermal noise collapse to give the experimentally observed trilayer structure of TIPS–PαMS–TIPS. The reported near absence of solution‐state phase separation of as‐cast blend layers containing a low molecular weight PαMS (of the order of 1 kDa) is also reproduced.  相似文献   

16.
Organic semiconductors hold the promise of simple, large area solution deposition, low thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we investigated its thermal, optical absorption, and electrochemical properties. Finally, the single crystal X-ray characterization is reported.  相似文献   

17.
A new family of naphthalimide‐fused thienopyrazine derivatives for ambipolar charge transport in organic field‐effect transistors is presented. Their electronic and molecular structures were elucidated through optical and vibrational spectroscopy aided by DFT calculations. The results indicate that these compounds have completely planar molecular skeletons which promote good film crystallinity and low reorganization energies for both electron and hole transport. Their performance in organic field‐effect transistors is compared with twisted and planar naphthaleneamidine monoimide‐fused terthiophenes in order to understand the origin of ambipolarity in this new series of molecular semiconductors.  相似文献   

18.
19.
A series of electron‐deficient π‐conjugated systems with 4,9‐dihydro‐s‐indaceno[2,1‐d:6,5‐d′]dithiazole‐4,9‐dione‐based structures and fluorinated acyl groups as the terminal units have been designed and synthesized for application as organic field‐effect transistor (OFET) materials. The thermal, photophysical, and electrochemical properties and OFET performance of the synthesized compounds were investigated. OFET evaluation revealed that all compounds exhibited typical electron‐transporting characteristics, and electron mobilities up to 0.26 cm2 V?1 s?1 could be achieved. The air stabilities of OFET operation were dependent on the nature of the compounds and were investigated by X‐ray diffraction and atomic force microscopy. The terminal units had a great influence not only on the molecular properties, but also on the film‐forming properties and OFET performance.  相似文献   

20.
A series of tricyanovinyl (TCV)-substituted oligothiophenes was synthesized and investigated with a number of physical methods including UV/Vis, IR, and Raman spectroscopy, nonlinear optical (NLO) measurements, X-ray diffraction, and cyclic voltammetry. Mono- or disubstituted oligomers were prepared by the reaction of tetracyanoethylene with mono- or dilithiated oligomers. The comparative effects of the symmetric and asymmetric substitutions in the electronic and molecular properties have been addressed. These oligomers display dramatic reductions in both their optical and electrochemical band gaps in comparison with unsubstituted molecules. The analysis of the electronic properties of the molecules was assisted by density functional theory calculations, which are in excellent agreement with the experimental data. TCV substitution influences the energies of the frontier orbitals, especially with respect to the stabilization of LUMO orbitals. X-ray structural characterization of a monosubstituted oligomer exhibits pi-stacking with favorable intermolecular interactions. NLO results agree with the role of the intramolecular charge-transfer feature in the asymmetric samples. These results furthermore exalt the role of conformational flexibility in the disubstituted compounds and reveal an unexpected nonlinear optical activity for symmetric molecules. Regarding the electronic structure, the interpretation of the vibrational data reflects the balanced interplay between aromatic and quinoid forms, finely tuned by the chain length and substitution pattern. The electronic and structural properties are consistent with the semiconducting properties exhibited by these materials in thin film transistors (TFTs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号