首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two water soluble Re(i) tricarbonyl diimine complexes containing cationic 2,2'-bipyridyl ligands [Re(L1)(CO)(3)(AN)](2+) (1) and [Re(L2)(CO)(3)(AN)](3+) (2) (L1 and L2: a cationic 2,2'-bipyridyl ligand, AN: acetonitrile) were synthesized and characterized. Their photophysical, electrochemical and electrochemiluminescent properties were investigated. The crystal structures of the two complexes have also been determined. Electrochemiluminescence (ECL) of the two complexes 1 and 2 have been studied in aqueous buffer solution in the presence of co-reactant tri-n-propylamine (TPrA) or 2-(dibutylamino)ethanol (DBAE) at a Au working electrode. The ECL behavior of the complexes was also studied in the presence of several surfactants such as Triton X-100 and Zonyl FSN. The ECL signals of the rhenium(i) complex were enhanced about 190-fold and 70-fold at a Au electrode in the presence of Triton X-100 for the [Re(L1)(CO)(3)(AN)](2+)/TPrA and [Re(L1)(CO)(3)(AN)](2+)/DBAE systems, respectively.  相似文献   

2.
Ru(II) complexes 1 – 3 bearing various N‐heterocyclic carbene (NHC) ligands were synthesized, and their photophysical, electrochemical, and electrogenerated chemiluminescence (ECL) properties were discussed to evaluate a potential of their use as multicolor ECL labels. Interestingly, they exhibited ECL emission ranging from greenish‐yellow to red both in nonaqueous and mixed aqueous solutions, which might show the potential of the Ru(II) complexes as multicolor ECL labels.  相似文献   

3.
The synthesis, complexation, evaluation of solution thermodynamics and photophysical properties of multidentate chelator 5-[[3-[(8-hydroxy-5-quinolyl)methoxy]-2-[(8-hydroxy-5-quinolyl)methoxy methyl]-2-methylpropoxy]methyl]quinolin-8-ol (TMOM5OX) with trivalent Fe, Al and Cr ions is described. The corresponding complexes were probed by elemental analysis, mass, infrared, absorption and emission spectroscopy, potentiometry, and theoretical (DFT) studies. The thermodynamically stable and soluble M3+ complexes show stability constants in the range log β110 = 23–30 and pM in the range of 19–30. The ligand forms distorted octahedral complexes in a tripodal orchestration and firmly binds metal ion over wide pH range. Density functional theory with B3LYP functional and 6-311G* basis set was employed for optimization, vibrational modes, NBO analysis, excitation and emission properties of the protonated, neutral, deprotonated states of the ligand and its ferric complex. The photophysical properties of TMOM5OX obtained by TD-DFT calculations showed good agreement with the experimental data. The result of NBOs and frontier molecular orbital analysis of ground and excited states of the metal complexes of TMOM5OX were used to explain the nature of the metal center.  相似文献   

4.
Kim BH  Lee do N  Park HJ  Min JH  Jun YM  Park SJ  Lee WY 《Talanta》2004,62(3):595-602
A series of o-phenanthroline-substituted ruthenium(II) complexes containing 2,2′-dipyridyl, 2-(2-pyridyl)benzimidazole, 2-(2-pyridyl)-N-methylbenzimidazole, 4-carboxymethyl-4′-methyl-2,2′-dipyridyl, and/or 4,4′-dimethyl-2,2′-dipyridyl ligands were synthesized and examined as potent electrochemiluminescent (ECL) materials. The characteristics of these complexes, regarding their electrochemical redox potentials and relative ECL intensities for tripropylamine were studied. As found in a 2,2′-bipyridyl-substituted ruthenium(II) complexes, a good correlation between the observed ECL intensity and the donor ability of α-diimine ligands was observed, i.e., the ECL intensity of the Ru(II) complex decreased with an increase in the ligand donor ability. The ECL efficiency increased as the number of substitutions of o-phenanthroline (o-phen) to metal complexes increased.  相似文献   

5.
A series of new heteroleptic iridium(III) complexes [Ir(C?N)2(N?N)]PF6 ( 1 ‐ 6 ) (each with two cyclometalating C?N ligands and one neutral N?N ancillary ligand, where C?N = 2‐phenylpyridine (ppy), 5‐methyl‐2‐(4‐fluoro)phenylpyridine (F‐mppy), and N?N = 2,2′‐dipyridyl (bpy), 1,10‐phenanthroline (phen), 4,4′‐diphenyl‐2,2′‐dipyridy (dphphen) were found to have rich photophysical properties. Theoretical calculations are employed for studying the photophysical and electrochemical properties. All complexes are investigated using density functional theory. Excited singlet and triplet states are examined using time‐dependent density functional theory. The low‐lying excited‐state geometries are optimized at the ab initio configuration interaction singles level. Then, the excited‐state properties are investigated in detail, including absorption and emission properties, photoactivation processes. The excited state of complexes is complicated and contains triplet metal‐to‐ligand charge transfer, triplet ligand‐to‐ligand charge transfer simultaneously. Importantly, the absorption spectra and emission maxima can be tuned significantly by changing the N?N ligands and C?N ligands. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

6.
A series of tetracyanoruthenate(II) with chelating pyridyl N‐heterocyclic carbene ligands (NHC‐py) was synthesized and characterized. Their photophysical and electrochemical properties as well as the photochromic behavior of their dithienylethene‐containing complexes were studied. Photocyclization was found to take place upon irradiation into the metal‐to‐ligand charge transfer (MLCT) absorption bands of these complexes, and evidence is provided to support the triplet‐sensitizing reaction pathway.  相似文献   

7.
A series of nine borylated arylisoquinolines has been prepared with systematic variation in their electronic properties and their photophysical properties were investigated. The color of their fluorescence can be finely tuned by changing the properties of the aryl moiety, which is involved in internal‐charge‐transfer processes. For example, methoxy‐substituted compound 5 showed an intense green emission, whereas dimethylamino‐substituted compound 6 showed an orange‐red emission. These new fluorophores were tested for their potential as molecular switches with external ionic stimuli, such as protons and fluoride ions. On the one hand, protonation of the isoquinoline moiety led to fluorescence enhancement for compounds that showed weak charge transfer and fluorescence quenching for compounds that showed strong charge transfer. On the other hand, the formation of ate complexes with fluoride led to strong fluorescence quenching in all of the investigated cases.  相似文献   

8.
Several dendritic bridging ligands were designed and synthesized to develop more sensitive and efficient electrochemiluminescent (ECL) polynuclear Ru(II) complexes. Various types of novel two-armed, four-armed and six-armed tris(bipyridyl)ruthenium core dendrimers were synthesized by coordinating dendritic polybipyridyl ligands with Ru(II) complexes, and the effect of the ligand and the dendritic network on the ECL characteristics were studied. Their electrochemical redox potentials, UV, photoluminescence (PL), and relative ECL intensities were also investigated in detail. The synthesized metallodendrimers exhibited strong metal-to-ligand charge transfer (MLCT) absorption at 428-451 nm and emission at 591-601 nm. Most of the newly synthesized metallodendrimers showed enhanced ECL intensities compared to the reference complex, [Ru(o-phen)3](PF6)2. In particular, the ECL intensities of the six-armed heptanuclear ruthenium complexes were almost four times greater than that of [Ru(o-phen)3]2+. These metallodendrimers could be utilized as efficient ECL materials and light emitting devices.  相似文献   

9.
A series of luminescent platinum(II) complexes of tridentate 1,3‐bis(N‐alkylbenzimidazol‐2′‐yl)benzene (bzimb) ligands has been synthesized and characterized. One of these platinum(II) complexes has been structurally characterized by X‐ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. Computational studies have been performed on this class of complexes to elucidate the origin of their photophysical properties. Some of these complexes have been utilized in the fabrication of organic light‐emitting diodes (OLEDs) by using either vapor deposition or spin‐coating techniques. Chloroplatinum(II)? bzimb complexes that are functionalized at the 5‐position of the aryl ring, [Pt(R‐bzimb)Cl], not only show tunable emission color but also exhibit high current and external quantum efficiencies in OLEDs. Concentration‐dependent dual‐emissive behavior was observed in multilayer OLEDs upon the incorporation of pyrenyl ligand into the Pt(bzimb) system. Devices doped with low concentrations of the complexes gave rise to white‐light emission, thereby representing a unique class of small‐molecule, platinum(II)‐based white OLEDs.  相似文献   

10.
Two homometallic complexes containing two and three ruthenium polypyridyl units linked by amino acid lysine (Lys) and the related dipeptide (LysLys) were synthesized and their electrochemical, spectroscopic, and electrochemiluminescence (ECL) properties were investigated. The electrochemical and photophysical data indicate that the two metal complexes largely retain the electronic properties of the reference compound for the separate ruthenium moieties in the two bridged complexes, [4-carboxypropyl-4'-methyl-2,2'-bipyridine]bis(2,2'-bipyridine)ruthenium(II) complex. The ECL studies, performed in aqueous media in the presence of tri-n-propylamine as co-reactant, show that the ECL intensity increases by 30% for the dinuclear and trinuclear complexes compared to the reference. Heterogeneous ECL immunoassay studies, performed on larger dendritic complexes containing up to eight ruthenium units, demonstrate that limitations due to the slow diffusion can easily be overcome by means of nanoparticle technology. In this case, the ECL signal is proportional to the number of ruthenium units. Multimetallic systems with several ruthenium centers may, however, undergo nonspecific bonding to streptavidin-coated particles or to antibodies, thereby increasing the background ECL intensity and lowering the sensitivity of the immunoassay.  相似文献   

11.
In this study, a copolymer of luminol with aniline is electrochemically deposited onto the AuAg/TiO2 nanohybrid functionalized indium tin oxide coated glass. It is used as a reagentless electrochemiluminescent (ECL) electrode for flow‐injection‐analysis (FIA). The properties of this solid phase ECL electrode are characterized by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy etc. It has stronger ECL emission, sensitive response for target analytes and excellent stability. The so‐prepared ECL electrode shows sensitive response to reactive oxygen species thereafter to be applied for determination of hydrogen peroxide with FIA mode. Under optimized conditions, a mass detection limit of 0.822 pg of hydrogen peroxide was obtained. Thus the hydrogen peroxide residues in samples were detected with satisfactory result.  相似文献   

12.
The functionalization of the peri position of the bay chlorinated tetraazaperylene was investigated by varying the donor behavior of the substituents to assess the resulting photophysical and electrochemical properties. To accomplish this, electron donating alkyl- and arylsulfido substituents, methoxy and methyl groups were selectively introduced into the peri position via a nucleophilic aromatic substitution of the perchlorinated tetraazaperylene. Both the alkylated and benzylated thioethers displayed high fluorescence quantum yields of up to 80 %. Compounds from the latter group were integrated in resonant optical microcavities to achieve strong light-matter coupling. The formation of exciton-polaritons was observed by angle-dependent reflectivity and photoluminescence that could be tuned by variation of the concentration of the fluorophores and of the thickness of the cavity.  相似文献   

13.
A series of symmetric fluorescent dyes built from a spirofluorene core bearing electroactive end groups and having different conjugated linkers were prepared with a view to their use as building blocks for the preparation of electrochemiluminescent (ECL) dyes and nanoparticles. Their electrochemical, spectroelectrochemical, and ECL properties were first investigated in solution, and structure/activity relationships were derived. The electrochemical and ECL properties show drastic variation that could be tuned by means of the nature of the π‐conjugated system, the end groups, and the core. In this series, highly fluorescent dye 1 based on a spirofluorene core and triphenylamine end groups connected via thiophene moieties shows the most promising and intriguing properties. Dye 1 is reversibly oxidized in three well‐separated steps and generates a very intense and large ECL signal. Its ECL efficiency is 4.5 times higher than that of the reference compound [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine). This remarkably high efficiency is due to the very good stability of the higher oxidized states and it makes 1 a very bright organic ECL luminophore. In addition, thanks to its molecular structure, this dye retains fluorescence after nanoprecipitation in water, which leads to fluorescent organic nanoparticles (FONs). The redox behavior of these FONs shows oxidation waves consistent with the initial molecular species. Finally, ECL from FONs made of 1 was recorded in water and strong ECL nanoemitters are thus obtained.  相似文献   

14.
Blue‐ and green‐emitting cyclometalated liquid‐crystalline iridium complexes are realized by using a modular strategy based on strongly mesogenic groups attached to an acetylacetonate ancillary ligand. The cyclometalated ligand dictates the photophysical properties of the materials, which are identical to those of the parent complexes. High hole mobilities, up to 0.004 cm2 V?1 s?1, were achieved after thermal annealing, while amorphous materials show hole mobilities of only approximately 10?7–10?6 cm2 V?1 s?1, similar to simple iridium complexes. The design strategy allows the facile preparation of phosphorescent liquid‐crystalline complexes with fine‐tuned photophysical properties.  相似文献   

15.
We synthesized and characterized a series of dyes built from a spirofluorene or truxene core. The quadrupolar spirofluorene system is the initial building unit for the design and preparation of more complex star-shaped dyes consisting of a truxene core bearing three di- or triphenylamine moieties with or without a thiophene connector. Their photophysical, electrochemical, and electrochemiluminescence (ECL) properties were first investigated in solution. Structure/activity relationships were derived and rationalized by comparing the quadrupolar system and trigonal truxene-core derivatives using computational studies. The photophysical and redox characteristics are drastically tuned by the introduction of a thiophene bridge and electron-donor substituents at their terminal branches. These comparative studies show the essential role of the stability of both radical cations and anions to obtain efficient ECL dyes. The stabilization of the radicals is directly related to the charge delocalization due to the π-conjugation by the thiophene bridge. The brightest ECL is achieved by annihilation and coreactant (benzoyl peroxide) pathways with the blue-emitting truxene dye, which is 2- and 4.5-times greater than that of the quadrupolar compound and reference [Ru(bpy)3]2+ emitter, respectively. Such an extensive study on these extended π-conjugated molecules presenting different core structures may guide the design and synthesis of new ECL dyes with a strong efficiency.  相似文献   

16.
The synthesis of a variety of 2‐(1H‐1,2,3‐triazol‐4‐yl)‐pyridines by click chemistry is demonstrated to provide straightforward access to mono‐functionalized ligands. The ring‐opening polymerization of ε‐caprolactone initiated by such a mono‐functionalized ligand highlights the synthetic potential of this class of bidentate ligands with respect to polymer chemistry or the attachment onto surfaces and nanoparticles. The coordination to RuII ions results in homoleptic and heteroleptic complexes with the resultant photophysical and electrochemical properties strongly dependent on the number of these ligands attached to the RuII core.  相似文献   

17.
The electrochemical properties of catecholate and o-amidophenolate complexes with triphenylantimony(V) with various substituents in the aromatic ring were examined. Introduction of electron-donating groups into the catecholate ligand or replacement of an O atom (in catecholate) by a N atom (o-amidophenolate) stabilizes the monocationic forms of the complexes obtained by one-electron oxidation. Complexes with electron-withdrawing substituents undergo irreversible two-electron oxidation resulting in the elimination of o-quinone. Complexes containing electron-withdrawing ligands do not form o-semiquinones and are inert to atmospheric oxygen. According to electrochemical data, oxygen can be bound reversibly by catecholate complexes containing the electron-donating methoxy groups in the 3,6-di-tert-butylcatecholate ligand and o-amidophenolate derivatives with half-wave oxidation potentials lower than or equal to 0.70 V (vs. Ag/AgCl), which form relatively stable cationic complexes upon the oxidation.  相似文献   

18.
Perylene dyes have been widely used as photoreceptors in organic photovoltaics because of their outstanding photo‐, thermal and chemical stability as well as their excellent photophysical properties. Herein we describe a novel generation of perylene dyes based on N‐(2,6‐diisopropylphenyl)‐perylene‐3,4‐dicarboximide. The optical properties of these novel perylenes can be finely tuned via the substituents in the 1‐, 6‐ and 9‐positions of the perylene core. The facile synthesis, tunable orbital and absorption properties, and electrochemical potentials help us to design efficient perylene sensitizers for solar‐cell applications.  相似文献   

19.
This work describes the syntheses, crystal structures, photophysical properties, and electro‐chemical analyses of benzo[k]fluoranthene‐based linear acenes, together with ab initio density functional theory computations on them. The molecules were prepared in generally moderate to good yields through Pd‐catalyzed cycloadditions between 1,8‐diethynylnaphthalene derivatives and aryl iodides. This protocol is simpler and more efficient than conventional methods. The scope and limitations of this reaction were examined. The structures of compounds 4 hb , 15 ac , 17 ab , 19 ac , and 24 je were determined by X‐ray analysis; they are either bent or twisted, rather than planar. The photophysical and electrochemical properties of these cycloadducts were also investigated and compared with computational predictions based on density functional theory.  相似文献   

20.
An efficient electrochemiluminescent (ECL) single-use sensor for H(2)O(2) is presented based on an electropolymerized film prepared on screen-printed gold electrode (gold SPE). A study of the copolymerization of luminol in the presence of different monomers was carried out. The polymeric films were grown potentiodynamically with a potential interval between -0.2 and 1.0 V in 0.2 M H(2)SO(4) and were characterized by their electrochemical, electrochemiluminescent, and superficial features. The polymer with the most efficient growth and ECL emission was poly(luminol-3,3',5,5'-tetramethylbenzidine) at 1:5 ratio. These prepared SPE cells present good mechanical and photoemissive properties. A semi-logarithmic linearization shows a noticeable four decade-width concentration range with a limit of detection (LOD) of 2.6 × 10(-9) M and a precision of 10.2% (n = 5; as relative standard deviation, RSD) in the medium range level. The described SPE ECL sensors will be useful for the determination of oxidase substrates in ECL single-use biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号