首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《化学:亚洲杂志》2017,12(1):86-94
An efficient route to the synthesis of benzo[5]helicene derivatives functionalized on the interior side of the helix was developed, and resulted in a series of 1,16‐diaryl‐substituted benzo[5]helicene derivatives starting from easily available 7‐methoxytetralone. X‐ray crystal structures showed that the benzo[5]helicene derivatives had highly helical, twisted structures, and could all create hierarchical packing architectures with alternating P and M layers in the solid state. Moreover, seven pairs of enantiomers based on 1,16‐diaryl‐substituted benzo[5]helicene derivatives were also obtained by efficient resolution through HPLC with semipreparative chiral columns. The enantiomers all showed clear mirror‐image circular dichroism (CD) spectra and high specific optical rotations, and their absolute configurations were determined by X‐ray crystallography. Interestingly, a helical nanotubular structure was formed by the self‐assembly of one enantiomer through halogen bonding. Furthermore, the enantiomers were found to have high racemization barriers and thermostability, which might be caused by the introduction of aryl substituents at the C1(C16) position.  相似文献   

2.
Oxidative fusion reactions of ortho ‐phenylene‐bridged cyclic hexapyrroles and hexathiophenes furnished novel closed helicenes in a selective manner. X‐Ray diffraction analysis unambiguously revealed the structures to be a closed pentaaza[9]helicene, the longest azahelicene reported so far, and an unexpected double‐helical structure of hexathia[9]/[5]helicene, whose formation was assumed to result from multiple oxidative fusion along with a 1,2‐aryl shift. The pentaaza[9]helicene exhibited well‐defined emission with high fluorescence quantum yield (Φ F=0.31) among the known [9]helicenes. Chiral resolution of the racemic pentaaza[9]helicene and hexathia[9]/[5]helicene were achieved by chiral‐phase HPLC and the enantiomers were characterized by circular dichroism spectra and DFT calculations.  相似文献   

3.
The interactions of a dicarbocyanine dye 3,3′‐diethylthiadicarbocyanine, DiSC2(5) , with DNA G‐quadruplexes were studied by means of a combination of various spectroscopic techniques. Aggregation of excess dye as a result of its positive charge is promoted by the presence of the polyanionic quadruplex structure. Specific high‐affinity binding to the parallel quadruplex of the MYC promoter sequence involves stacking of DiSC2(5) on the external G‐tetrads; the 5′‐terminal tetrad is the favored binding site. Significant energy transfer between DNA and the dye in the UV spectral region is observed upon DiSC2(5) binding. The transfer efficiency strongly depends on the DNA secondary structure as well as on the G‐quadruplex topology. These photophysical features enable the selective detection of DNA quadruplexes through sensitized DiSC2(5) fluorescence in the visible region.  相似文献   

4.
The properties of mono‐ and bis‐Ru–vinyl[6]helicene complexes ( 2 a and 2 b , respectively), recently synthesized by using molecular engineering of helicenes based on the grafting of lateral organometallic substituents on the π‐helical backbone through a vinyl bridge, are presented. These helicene derivatives are thoroughly characterized, with special attention given to their chiroptical properties and redox switching activity. The UV/Vis and electronic circular dichroism (ECD) spectra of P and M enantiopure species, both in the neutral and oxidized states ([ 2 a ] . +, [ 2 b ] . +, and [ 2 b ]2+), are analyzed with the aid of quantum‐chemical calculations. The extended π‐conjugation facilitated by the vinyl moiety, clearly visible in the electronic structures of 2 a , b , introduces new active bands in the ECD spectra that consequently lead to a significant increase in optical rotation of Ru–vinylhelicenes compared with the organic precursors. The vibrational circular dichroism (VCD) spectra were measured and calculated for both the organic and organometallic species and constitute the first examples of VCD for metal‐based helicene derivatives. Finally, the redox‐triggered chiroptical switching activity of 2 a , b is examined in detail by using ECD spectroscopy. The modifications of the ECD spectra in the UV/Vis and NIR region are well reproduced and rationalized by calculations.  相似文献   

5.
Two large conjugated naphthalimide derivatives with or without three‐methane‐bridged thiazole orange (TO3; i.e., compounds 1 a and 2 a , respectively) were designed and synthesized. The fluorescence of the naphthalimide group in compound 1 a at λ=532 nm initially decreased and that for the TO3 group at λ=655 nm increased sequentially upon adding Salmon testes (St) DNA. In contrast, without the TO3 group, the fluorescence intensity of compound 2 a monotonously decreased in response to the addition of DNA. The non‐monotonic change in the fluorescence for compound 1 a could be divided into two linear sections with two different wavelengths in the range of 0<Rb/ 1 a <1.2 and 1.2 <Rb/ 1 a <6.0 (Rb/ 1 a =[base pair]/[ 1 a ]). Thus, compound 1 a can be regarded as a programmed responding molecule for DNA, which can semi‐quantitatively determine the concentration of DNA over a large concentration range from the standard fluorescence curve of compound 1 a at different wavelengths when bound with DNA. Furthermore, the binding modes of compounds 1 a and 2 a with StDNA were studied by using CD spectroscopy and melting temperature (Tm) testing. The results showed that compound 1 a interacts with StDNA through multi‐interactions including weak intercalation, weak minor groove binding, and inter‐dye interactions, whereas compound 2 a bound with DNA through simultaneous intercalation and minor groove binding.  相似文献   

6.
It is well known that proflavine binds to DNA. Here we investigate the binding mode of proflavine to native DNA using absorption, circular dichroism (CD), and linear dichroism (LD) spectroscopy as well as by fluorescence techniques. The observed changes of proflavine upon complexation with DNA can be summarized as a red shift and hypochromism in the absorption spectrum. The negative LDr in the proflavine absorption region has a magnitude comparable to or larger than that of the DNA absorption region, confirming the intercalative binding mode of proflavine to DNA. Saturation of the LD spectrum in the proflavine absorption region at R = 0.25 and a decrease in the fluorescence intensity provide further evidence of intercalation. Furthermore, the coupling of electric transition of intercalated proflavine is observed. Although proflavine has been reported to position itself along the DNA stem at high [proflavine]/[DNA base] ratios, the spectral characteristics, which include a clear isosbestic point in the absorption spectrum and proportionality in the LD magnitude in the proflavine absorption region, do not show any possibility of exterior binding.  相似文献   

7.
A series of fluorescent “push‐pull” tetrathia[9]helicenes based on quinoxaline (acceptor) fused with tetrathia[9]helicene (donor) derivatives was synthesized for control of the excited‐state dynamics and circularly polarized luminescence (CPL) properties. In this work, introduction of a quinoxaline onto the tetrathia[9]helicene skeleton induced the “push–pull” character, which was enhanced by further introduction of an electron‐releasing Me2N group or an electron‐withdrawing NC group onto the quinoxaline unit (denoted as Me2N‐QTTH and NC‐QTTH, respectively). These trends were successfully discussed in terms of by electrochemical measurements and density functional theory (DFT) calculations. As a consequence, significant enhancements in the fluorescence quantum yields (ΦFL) were achieved. In particular, the maximum ΦFL of Me2N‐QTTH was 0.43 in benzene (NC‐QTTH: ΦFL=0.30), which is more than 20 times larger than that of a pristine tetrathia[9]helicene (denoted as TTH; ΦFL=0.02). These enhancements were also explained by kinetic discussion of the excited‐state dynamics such as fluorescence and intersystem crossing (ISC) pathways. Such significant enhancements of the ΦFL values thus enabled us to show the excellent CPL properties. The value of anisotropy factor gCPL (normalized difference in emission of right‐handed and left‐handed circularly polarized light) was estimated to be 3.0×10?3 for NC‐QTTH.  相似文献   

8.
Two types of ruthenocenes and a ferrocene coordinated by rac ‐9H ‐cyclopenta[1,2‐c :4,3‐c ′]diphenanthrenyl anion(s), a [7]helicene with a cyclopentadienyl moiety at the center of its skeleton, were successfully synthesized: mono‐helicene ruthenocene 1 and its iron analogue 1Fe with one [7]helicene ligand bound to the central metal, and bis‐helicene ruthenocene 2 with two [7]helicenes. Starting from a racemic mixture of the ligand precursor, rac ‐ 2 and meso ‐ 2 were obtained in a 7:3 ratio. Since the [7]helicene has a high racemization barrier, enantiomers of the complexes were isolated in their pure forms; they showed large optical rotations and intense circular dichroism (CD) responses.  相似文献   

9.
This study reports a detailed biophysical analysis of the DNA binding and cytotoxicity of six platinum complexes (PCs). They are of the type [Pt(PL)(SS‐dach)]Cl2, where PL is a polyaromatic ligand and SS‐dach is 1S,2S‐diaminocyclohexane. The DNA binding of these complexes was investigated using six techniques including ultraviolet and fluorescence spectroscopy, linear dichroism, synchrotron radiation circular dichroism, isothermal titration calorimetry and mass spectrometry. This portfolio of techniques has not been extensively used to study the interactions of such complexes previously; each assay provided unique insight. The in vitro cytotoxicity of these compounds was studied in ten cell lines and compared to the effects of their R,R enantiomers; activity was very high in Du145 and SJ‐G2 cells, with some submicromolar IC50 values. In terms of both DNA affinity and cytotoxicity, complexes of 5,6‐dimethyl‐1,10‐phenanthroline and 2,2′‐bipyridine exhibited the greatest and least activity, respectively, suggesting that there is some correlation between DNA binding and cytotoxicity.  相似文献   

10.
A new copper(II) complex, [Cu(naph‐leu)phen]CH3OH·0.5H2O, in which naph‐leu is the tridentate Schiff base ligand derived from the condensation of 2‐hydroxy‐1‐naphthaldehyde and L‐leucine, phen is phenanthroline, has been synthesized and characterized by elemental analyses, IR spectra and single crystal X‐ray diffraction. The DNA‐binding properties of this complex have been investigated by absorption spectra, fluorescence spectra and circular dichroism (CD) spectra, as well as viscosity measurement. Results show that this copper(II) complex binds to calf thymus DNA (CT‐DNA) in an intercalative mode and its intrinsic binding constant Kb is 4.87×103 L·mol?1. Furthermore, the DNA cleavage activity of this copper(II) complex has also been investigated by submarine gel electrophoresis. Interestingly, it was found that this complex can cleave the supercoiled plasmid pBR322 DNA to both nicked and linear forms.  相似文献   

11.
A synthetic strategy that utilizes O6‐protected 8‐bromoguanosine gives broad access to C8‐guanine derivatives with phenyl, pyridine, thiophene, and furan substituents. The resulting 8‐substituted 2′‐deoxyguanosines are push–pull fluorophores that can exhibit environmentally sensitive quantum yields (Φ=0.001–0.72) due to excited‐state proton‐transfer reactions with bulk solvent. Changes in nucleoside fluorescence were used to characterize metal‐binding affinity and specificity of 8‐substituted 2′‐deoxyguanosines. One derivative, 8‐(2‐pyridyl)‐2′‐deoxyguanosine (2PyG), exhibits selective binding of CuII, NiII, CdII, and ZnII through a bidentate effect provided by the N7 position of guanine and the 2‐pyridyl nitrogen atom. Upon incorporation into DNA, 2‐pyridine‐modified guanine residues selectively bind to CuII and NiII with equilibrium dissociation constants (Kd) that range from 25 to 850 nM ; the affinities depend on the folded state of the oligonucleotide (duplex>G‐quadruplex) as well as the identity of the metal ion (Cu>Ni?Cd). These binding affinities are approximately 10 to 1 000 times higher than for unmodified metal binding sites in DNA, thereby providing site‐specific control of metal localization in alternatively folded nucleic acids. Temperature‐dependent circular‐dichroism studies reveal metal‐dependent stabilization of duplexes, but destabilization of G‐quadruplex structures upon adding CuII to 2PyG‐modified oligonucleotides. These results demonstrate how the addition of a single pyridine group to the C8 position of guanine provides a powerful new tool for studying the effects of N7 metalation on the structure, stability, and electronic properties of nucleic acids.  相似文献   

12.
The phenanthridinium chromophores 5‐ethyl‐6‐phenylphenanthridinium ( 1 ), 5‐ethyl‐6‐methylphenanthridinium ( 2 ), 3,8‐diamino‐5‐ethyl‐6‐methylphenanthridinium ( 3 ), and 3,8‐diamino‐5‐ethyl‐6‐(4‐N,N‐diethylaminophenyl)phenanthridinium ( 4 ) were characterized by their optical and redox properties. All dyes were applied in titration experiments with a random‐sequence 17mer DNA duplex and their binding affinities were determined. The results were compared to well‐known ethidium bromide ( E ). In general, this set of data allows the influence of substituents in positions 3, 6, and 8 on the optical properties of E to be elucidated. Especially, compound 4 was used to compare the weak electron‐donating character of the phenyl substituent at position 6 of E with the more electron‐donating 4‐N,N‐diethylaminophenyl group. Analysis of all of the measurements revealed two pairs of chromophores. The first pair, consisting of 1 and 2 , lacks the amino groups in positions 3 and 8, and, as a result, these dyes exhibit clearly altered optical and electrochemical properties compared with E . In the presence of DNA, a significant fluorescence quenching was observed. Their binding affinity to DNA is reduced by nearly one order of magnitude. The electronic effect of the phenyl group in position 6 on this type of dye is rather small. The properties of the second set, 3 and 4 , are similar to E due to the presence of the two strongly electron‐donating amino groups in positions 3 and 8. However, in contrast to 1 and 2 , the electron‐donating character of the substituent in position 6 of 3 and 4 is critical. The binding, as well as the fluorescence enhancement, is clearly related to the electron‐donating effect of this substituent. Accordingly, compound 4 shows the strongest binding affinity and the strongest fluorescence enhancement. Quantum chemical calculations reveal a general mechanism related to the twisted intramolecular charge transfer (TICT) model. Accordingly, an increase of the twist angle between the phenyl ring in position 6 and the phenanthridinium core opens a nonradiative channel in the excited state that depends on the electron‐donating character of the phenyl group. Access to this channel is hindered upon binding to DNA.  相似文献   

13.
In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of α-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.  相似文献   

14.
Interaction between alpha‐eleostearic acid (α‐ESA) and calf thymus DNA in Tris‐HCl buffer (pH = 7.4) using neutral red (NR) dye as a spectral probe was investigated using UV–Vis absorption and fluorescence spectroscopy. Spectral data matrix of the complexed reaction between α‐ESA and NR with DNA was processed with an alternative least‐squares (ALS) algorithm, the obtained concentration profiles and the corresponding pure spectra for species (NR, DNA–NR, and DNA–NR–ESA) demonstrated three kinds of reactions might occur in the system. The major groove binding between α‐ESA and DNA was further validated using circular dichroism, viscosity, DNA melting, and ionic strength effect measurements. Moreover, the calculated values of thermodynamic parameters, such as enthalpy (ΔHθ, ?22.04 kJ/mol) and entropy change (ΔSθ, 91.52 J K?1 mol?1), suggested binding between α‐ESA and DNA was mainly driven by hydrophobic interactions and hydrogen bonds without electrostatic force.  相似文献   

15.
The paper investigates an application of luminescent bioassays to monitor the toxicity of organic halides. Effects of xanthene dyes (fluorescein, eosin Y, and erythrosin B), used as model compounds, on bioluminescent reactions of firefly Luciola mingrelica, marine bacteria Photobacterium leiognathi, and hydroid polyp Obelia longissima were studied. Dependence of bioluminescence quenching constants on the atomic weight of halogen substituents in dye molecules was demonstrated. Bacterial bioluminescence was shown to be most sensitive to heavy halogen atoms involved in molecular structure; hence, it is suitable for construction of sensors to monitor toxicity of halogenated compounds. Mechanisms of bioluminescence quenching—energy transfer processes, collisional interactions, and enzyme–dye binding—were considered. Changes of bioluminescence (BL) spectra in the presence of the dyes were analyzed. Interactions of the dyes with enzymes were studied using fluorescence characteristics of the dyes in steady-state and time-resolved experiments. The dependences of fluorescence anisotropy of enzyme-bound dyes, the average fluorescence lifetime, and the number of exponential components in fluorescence decay on the atomic weight of halogen substituents were demonstrated. The results are discussed in terms of “dark effect of heavy halogen atom” in the process of enzyme–dye binding; hydrophobic interactions were assumed to be responsible for the effect.  相似文献   

16.
A broad series of homochiral perylene bisimide (PBI) dyes were synthesized that are appended with amino acids and cationic side chains at the imide positions. Self‐assembly behavior of these ionic PBIs has been studied in aqueous media by UV/Vis spectroscopy, revealing formation of excitonically coupled H‐type aggregates. The interactions of these ionic PBIs with different ds‐DNA and ds‐RNA have been explored by thermal denaturation, fluorimetric titration and circular dichroism (CD) experiments. These PBIs strongly stabilized ds‐DNA/RNA against thermal denaturation as revealed by high melting temperatures of the formed PBI/polynucleotide complexes. Fluorimetric titrations showed that these PBIs bind to ds‐DNA/RNA with high binding constants depending on the number of the positive charges in the side chains. Thus, spermine‐containing PBIs with six positive charges each showed higher binding constants (logKs=9.2–9.8) than their dioxa analogues (logKs=6.5–7.9) having two positive charges each. Induced circular dichroism (ICD) of PBI assemblies created within DNA/RNA grooves was observed. These ICD profiles are strongly dependent on the steric demand of the chiral substituents of the amino acid units and the secondary structure of the DNA or RNA. The observed ICD effects can be explained by non‐covalent binding of excitonically coupled PBI dimer aggregates into the minor groove of DNA and major groove of RNA which is further supported by molecular modeling studies.  相似文献   

17.
Aza[n]helicene phosphole derivatives have been prepared from aza[n]helicene diynes by the Fagan–Nugent route. Their photophysical properties (UV/Vis absorption and emission behavior) have been evaluated. Their behavior as P,N chelates towards coordination to PdII and CuI has been investigated: metal–bis(aza[n]helicene phosphole) assemblies are formed by a highly stereoselective coordination process, as demonstrated by X‐ray crystallography. An aza[6]helicene phosphole bearing an enantiopure helicene part has been obtained, which allows the preparation of enantiopure PdII and CuI complexes with original topologies and high molar rotation (MR) and circular dichroism (CD). The structure–property relationship established from the experimental data has been studied in detail by theoretical studies (TDDFT calculations of UV/Vis, CD, and MR). Aza[n]helicene phosphole derivatives show π conjugation extended over the entire molecule, and its influence on the MR of aza[6]helicene phosphole 5 c has been demonstrated. Finally, it has been shown that the nature of the metal (coordination geometry and electronic interaction) can have a great impact on the amplitude of the chiroptical properties in metal–bis(aza[n]helicene phosphole) assemblies.  相似文献   

18.
G‐quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G‐quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G‐quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G‐quadruplex binding. We determined two NBTE ‐G‐quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G‐quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G‐quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G‐quadruplex DNA in live cells with NBTE and found G‐quadruplex DNA content in cancer cells is 4‐fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

19.
The synthesis of redox‐active p‐ and o‐quinones 2‐phenylamino‐4‐phenylimino[6]helicene‐1‐one 1 , 2‐phenylamino[6]‐helicene‐1,4‐dione 2 , and 4‐phenyl[6]helicene‐1,2‐dione 3 in their enantiopure forms by post‐functionalization of (P)‐ and (M)‐1,2‐dimethoxy[6]helicene is presented. Structural characterization in solution and in the solid state was accomplished by 2D NMR spectroscopy methods and X‐ray diffraction analysis, respectively. Interpretation of electrochemical redox data was accompanied by a detailed orbital picture, derived from DFT calculations. The electronic structures of compounds 1 – 3 were investigated by UV/Vis and electronic circular dichroism (ECD) spectroscopy, complemented by TD‐DFT calculations. Quinones 1 – 3 were chemically reduced to study the EPR signatures of their respective radical anions. DFT methods were used for the atom assignment of the hyperfine coupling constants. The results are discussed within the context of electrochromic chiral switches and molecular recognition.  相似文献   

20.
Novel benzo[1,2-b:4,3-b′]dinaphthofuran (oxa[7]helicene) with various substituents in the central ring were designed and successfully synthesized based on the late stage central ring formation strategy from naphthofuranoneby using an efficient McMurry coupling or Friedel-Crafts acylation. The photochemical properties of helicenes were evaluated by UV-Visible absorption spectroscopy and fluorescence spectroscopy, while electrochemical behaviour including their energy profile were investigated by cyclic voltammetry and DFT calculations. According to the computational study, substituents on the central ring could influence both electron delocalization and MO distribution of oxa[7]helicenes resulting in the change in charge transporting ability. In comparison to the parent carbo[7]helicene, the furan unit in conjunction with substituents on helical system caused the bathochromic shift with different absorption pattern and exhibited higher fluorescence quantum yield (ϕf up to 0.63). These new materials showed promising characteristics in optoelectronic application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号