首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports gold‐catalyzed [4+3]‐annulations of 2‐(1‐alkynyl)‐2‐alken‐1‐ones with anthranils to yield epoxybenzoazepine products with excellent exo‐diastereoselectivity (dr>25:1). The utility of this new gold catalysis is manifested by applicable substrates over a broad scope. More importantly, the enantioselective versions of these [4+3]‐cycloadditions have been developed satisfactorily with chiral gold catalysts under ambient conditions (DCM, 0 °C); the ee levels range from 88.0–99.9 %. With DFT calculations, we postulate a stepwise pathway to rationalize the preferable exo‐stereoselection.  相似文献   

2.
With the suitable selection of a gold catalyst as well as the appropriate control of the reaction conditions, various new gold‐catalyzed cyclizations of 2‐alkynyl benzaldehyde with acyclic or cyclic vinyl ethers have been developed. Acetal‐tethered dihydronaphthalene and isochromenes were obtained from the reactions of 2‐alkynyl benzaldehydes with acyclic vinyl ethers under mild conditions. And, more interestingly, the gold‐catalyzed reactions of 2‐alkynyl benzaldehyde with a cyclic vinyl ether afforded the bicyclo[2.2.2]octane derivative involving two molecules of cyclic vinyl ethers. These products contain interesting substructures that have been found in many biologically active molecules and natural products. In addition, a gold‐catalyzed homo‐dimerization of 2‐phenylethynyl benzaldehyde 1 a was observed when the reaction was carried out in the absence of vinyl ether, affording a set of separable diastereomeric products. Plausible mechanisms for these transformations are discussed; a gold‐containing benzopyrylium was regarded as the crucial intermediate by which a number of these new transformations took place.  相似文献   

3.
The first catalytic alkyne hydroboration of propargyl amine boranecarbonitriles is accomplished with triazole‐AuI complexes. While the typical [L‐Au]+ species decomposes within minutes upon addition of amine boranecarbonitriles, the triazole‐modified gold catalysts (TA‐Au) remained active, and allowed the synthesis of 1,2‐BN‐cyclopentenes in one step with good to excellent yields. With good substrate tolerability and mild reaction conditions (open‐flask), this new method provides an alternative route to reach the interesting cyclic amine borane with high efficiency.  相似文献   

4.
5.
The gold(I) complex catalyzed cycloisomerization and skeletal rearrangement of 1,n‐enynes (n=5–7) is a powerful methodology for the efficient synthesis of complex molecular architectures. In contrast to 1,6‐enynes, readily accessible homologous 1,7‐enynes are largely unexplored in such transformations. Here, the divergent skeletal rearrangement of all‐carbon 1,7‐enynes by catalysis with a cationic gold(I) complex is reported. Depending on electronic and steric factors, differently substituted 1,7‐enynes react via different carbocations formed from a common gold carbene intermediate to yield on the one hand novel exocyclic allenes and on the other hand tricyclic hexahydro‐anthracenes through a novel dehydrogenative Diels–Alder reaction.  相似文献   

6.
Ortho‐Alkynylbenzaldehydes have been widely used to generate isochromenylium derivatives through gold‐catalyzed cycloisomerization. These isochromenylium derivatives have been exploited as formal diene derivatives for reactions with different dienophiles. Herein, we describe the behavior of ortho‐alkynylsalicylaldehydes, a particular case of ortho‐alkynylbenzaldehydes. The gold‐catalyzed cycloisomerization of ortho‐alkynylsalicylaldehydes delivers an unusual heterodiene derivative that reacts with electron‐rich alkenes through a formal [4+2] cycloaddition. In this reaction, both the diene and dienophile are generated in situ through gold‐catalyzed cycloisomerization of appropriate alkynamines or alkynols. This reaction was used to synthesize complex tetracyclic pyrano[2,3,4‐de]chromenes from two very simple starting materials (an ortho‐alkynylsalicylaldehyde and an alkynamine or alkynol) with complete atom economy and with selective formation of bonds, cycles, and stereocenters.  相似文献   

7.
A novel gold‐catalyzed tandem protocol, initiated by hydride transfer in the presence of catalytic (C6F5)3PAuCl/AgSbF6, for the formation of fused polycyclic ring systems has been achieved. This tandem reaction provides rapid access to various fused polycyclic species in a single chemical operation, leading to stereospecific formation of two carbon–carbon bonds and three rings.  相似文献   

8.
A strategy for in situ generation of furan‐based ortho‐quinodimethanes (o‐QDMs) by the gold(I)‐mediated dehydrogenative heterocyclization of 2‐(1‐alkynyl)‐2‐alken‐1‐ones in the presence of pyridine N‐oxide under mild reaction conditions was developed. These in situ furan‐based o‐QDMs were trapped by electron‐deficient olefins and alkynes, thus furnishing various 2,3‐furan‐fused carbocycles in good yields with high diastereo‐ and regioselectivities.  相似文献   

9.
Ruthenium‐catalyzed selective monoalkenylation of ortho C? O or C? N bonds of aromatic ketones was achieved. The reaction allowed the direct comparison of the relative reactivities of the cleavage of different carbon‐heteroatom bonds, thus suggesting an unconventional chemoselectivity, where smaller, more‐electron‐donating groups are more easily cleaved. Selective monofunctionalization of C? O bonds in the presence of ortho C? H bonds was also achieved.  相似文献   

10.
A highly efficient and regioselective synthetic route to 6 H‐isoindolo[2,1‐a]indol‐6‐ones and indeno[1,2‐b]indol‐10(5 H)‐ones through the Pd‐catalyzed cyclocarbonylation of 2‐(2‐bromoaryl)indoles under atmospheric CO pressure has been achieved. Notably, the regioselectivity of the reaction was exclusively dependent on the structural characteristics of the indole substrates. With N‐unsubstituted indoles as the starting materials, the reaction afforded 6H‐isoindolo[2,1‐a]indol‐6‐ones in good‐to‐excellent yields. On the other hand, with N‐substituted indoles as the substrates, the reaction gave indeno[1,2‐b]indol‐10(5 H)‐ones in a highly regioselective manner.  相似文献   

11.
Indenes and related polycyclic structures have been efficiently synthesized by gold(I)‐catalyzed cycloisomerizations of appropriate ortho‐(alkynyl)styrenes. Disubstitution at the terminal position of the olefin was demonstrated to be essential to obtain products originating from a formal 5‐endodig cyclization. Interestingly, a complete switch in the selectivity of the cyclization of o‐(alkynyl)‐α‐methylstyrenes from 6‐endo to 5‐endo was observed by adding an alcohol to the reaction media. This allowed the synthesis of interesting indenes bearing an all‐carbon quaternary center at C1. Moreover, dihydrobenzo[a]fluorenes can be obtained from substrates bearing a secondary alkyl group at the β‐position of the styrene moiety by a tandem cycloisomerization/1,2‐hydride migration process. In addition, diverse polycyclic compounds were obtained by an intramolecular gold‐catalyzed alkoxycyclization of o‐(alkynyl)styrenes bearing a nucleophile in their structure. Finally, the use of a chiral gold complex allowed access to elusive chiral 1H‐indenes in good enantioselectivities.  相似文献   

12.
13.
14.
15.
16.
17.
An efficient and convenient synthesis of useful linear cyclopentenone‐fused polycyclic compounds has been achieved through a novel gold(I)‐catalyzed transformation of diynes. The method demonstrates high product yields and tolerates of a wide variety of important functional groups. Gold‐vinylidene formation, methoxy group migration, and Nazarov‐type cyclization are proposed to be the key steps in the reaction pathway. The synthetic utility of this method is demonstrated by converting the product to eight‐membered‐ring‐fused compound.  相似文献   

18.
19.
Kinetically unstable nitrones are generated from gold‐catalyzed reactions of 1,6‐enynes with N‐hydroxyanilines, and subsequently trapped by tethered alkenes to furnish [2+2+1]‐annulations. Our experimental data reveal that such nitrones arise from atypical N‐attack chemoselectivity that is triggered by tethered alkenes to facilitate the key protodeauration reaction.  相似文献   

20.
Change the ligand, change the stereochemistry : 2,3‐Bis(acetoxy)‐1,3‐dienes are obtained in a stereocontrolled manner by a novel tandem 1,2‐/1,2‐bis(acetoxy) rearrangement (see scheme, R1 and R2 are δ+ stabilizing). Upon stabilization of the reaction intermediates, the ligand attached to gold controls the stereochemistry of the alkene in the second acetate migration, that is, N‐heterocyclic carbenes (NHC) favor cis alkenes, whereas phosphine ligands selectively afford trans olefins.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号