首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Artificial glutathione peroxidase (GPx) model 2, 2'-ditellurobis(2-deoxy-beta-cyclodextrin) (2-TeCD) which has the desirable properties exhibited high substrate specificity and remarkably catalytic efficiency when 3-carboxy-4-nitrobenzenethiol (ArSH) was used as a preferential thiol substrate. The complexation of ArSH with beta-cyclodextrin was investigated through UV spectral titrations, fluorescence spectroscopy, 1H NMR and molecular simulation, and these results indicated that ArSH fits well to the size of the cavity of beta-cyclodextrin. Furthermore, 2-TeCD was found to catalyze the reduction of cumene peroxide (CuOOH) by ArSH 200,000-fold more efficiently than diphenyl diselenide (PhSeSePh). Its steady-state kinetics was studied and the second rate constant kmax/KArSH was found to be 1.05 x 10(7) M(-1) min(-1) and similar to that of natural GPx. Moreover, the kinetic data revealed that the catalytic efficiency of 2-TeCD depended strongly upon the competitive recognition of both substrates for 2-TeCD. The catalytic mechanism of 2-TeCD catalysis agreed well with a ping-pong mechanism, in analogy with natural GPx, and might exert its thiol peroxidase activity via tellurol, tellurenic acid, and tellurosulfide.  相似文献   

2.
The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.  相似文献   

3.
Solvent‐dependent switching of graphene oxide (GO) as fluorescence quencher or enhancer was observed. In some solvents, GO increases the fluorescence yield of a hydrophilic molecule 7‐(diethylamino)‐coumarin‐3‐carboxylic acid (7‐DCA), and in some solvents GO act as a quencher of fluorescence.  相似文献   

4.
A Ca2+‐responsive artificial selenoenzyme was constructed by computational design and engineering of recoverin with the active center of glutathione peroxidase (GPx). By combining the recognition capacity for the glutathione (GSH) substrate and the steric orientation of the catalytic selenium moiety, the engineered selenium‐containing recoverin exhibits high GPx activity for the catalyzed reduction of H2O2 by glutathione (GSH). Moreover, the engineered selenoenzyme can be switched on/off by Ca2+‐induced allosterism of the protein recoverin. This artificial selenoenzyme also displays excellent antioxidant ability when it was evaluated using a mitochondrial oxidative damage model, showing great potential for controlled catalysis in biomedical applications.  相似文献   

5.
A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.  相似文献   

6.
Facile and efficient reduction of graphene oxide (GO) and novel applications of the reduced graphene oxide (RGO) based materials are of current interest. Herein, we report a novel and facile method for the reduction of GO by using a biocompatible reducing agent dithiothreitol (DTT). Stabilization of DTT by the formation of a six‐membered ring with internal disulfide linkage upon oxidation is responsible for the reduction of GO. The reduced graphene oxide is characterized by several spectroscopic and microscopic techniques. Dispersion of RGO in DMF remained stable for several weeks suggesting that the RGO obtained by DTT‐mediated reduction is hydrophobic in nature. This method can be considered for large scale production of good quality RGO. Treatment of RGO with hemin afforded a functional hemin‐reduced graphene oxide (H‐RGO) hybrid material that exhibited remarkable protective effects against the potentially harmful peroxynitrite (PN). A detailed inhibition study on PN‐mediated oxidation and nitration reactions indicate that the interaction between hemin and RGO results in a synergistic effect, which leads to an efficient reduction of PN to nitrate. The RGO also catalyzes the isomerization of PN to nitrate as the RGO layers facilitate the rapid recombination of .NO2 with FeIV=O species. In the presence of reducing agents such as ascorbic acid, the FeIV=O species can be reduced to FeIII, thus helping to maintain the PN reductase cycle.  相似文献   

7.
Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross‐linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene‐modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil‐phase are incorporated into the polymer particle through thiol‐ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO‐armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials.

  相似文献   


8.
采用NADPH/GSSG还原酶为指示剂的偶合法测定了两类共7种新型苯并异硒唑酮氨基酸衍生物的GSH-Px活性.结果表明,所有模拟物均显示较好的GSH-Px样活性,并且具有明显的构-效关系.  相似文献   

9.
We report an effective method for bulk obtaining exfoliated graphene oxide (GO) solids from their aqueous solutions, which were prepared from nature graphite by an oxidation method. Tyndall effect proved that GO solution has a colloidal nature. Different flocculants were used to coagulate GO colloidal, and it was found that NaOH had the most obvious coagulation effect to GO. Transmission electron microscopy, X‐ray diffraction and atomic force microscopy analysis demonstrated that there were a large number of complete few‐layer GO sheets with thickness of about 0.8 nm, and the surfaces were very smooth, almost free of impurities. Liquid state 13C NMR and Fourier transformation infrared spectra showed the presence of abundant benzene carboxylic, hydroxyl and epoxide groups in the basal planes of GO. The graphene materials reduced from GO solids had good electrical conductivity. Our work explored a simple and effective route to extract GO from their solution, which is the most important to GO and graphene researches and applications.  相似文献   

10.
The preparation of chemically modified graphene (CMG) generally involves the reduction of graphite oxide (GO) by using various reducing reagents. Herein, we report a free‐radical‐promoted synthesis of CMG, which does not require any conventional reductant. We demonstrated that the phenyl free radical can efficiently promote the conversion of GO into CMG under mild conditions and produces phenyl‐functionalized CMG. This pseudo‐“reduction” process is attributed to a free‐radical‐mediated elimination of the surface‐attached oxygen‐containing functionalities. This work illustrates a new strategy for preparing CMG that is alternative to the conventional means of chemical reduction. Furthermore, the phenyl‐functionalized graphene shows an excellent performance as an electrode material for lithium‐battery applications.  相似文献   

11.
Min Song  Juan Xu 《Electroanalysis》2013,25(2):523-530
In this study, branched polyethyleneimine (PEI) was covalently linked to carboxylic acid functionalized graphene (GO‐COOH) to form GO‐COOH/PEI composites. Transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra and thermogravimetric analysis were used to characterize the obtained composites. Electrochemical measurements indicated that the modification of the composites on the electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors. Moreover, our results also indicated that the electrocatalytic oxidation of ammonia could be observed on the GO‐COOH/PEI composites modified glassy carbon electrode. Consequently, our observations demonstrated that GO‐COOH/PEI composites were excellent materials for electrochemical sensing.  相似文献   

12.
单云  张红琳  张凤 《应用化学》2015,32(7):837-842
分别采用改进Hummers方法和水热还原法制备了氧化石墨烯(GO)和还原氧化石墨烯(RGO)。 GO和RGO经透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、红外光谱(IR)、荧光发射和激发光谱(PL、PLE)等技术手段进行了表征。 荧光发射光谱显示,氧化石墨烯(GO)在可见光的激发下可以得到波长在600~800 nm范围内的宽谱近红外荧光。 通过比较氧化石墨烯水热还原前后的光谱变化,发现氧化石墨烯近红外荧光起源于氧化石墨烯的表面含氧基团,如C=O、COOH。 近红外荧光穿透性好、对生物组织损坏小,非常适合于生物成像,预示着氧化石墨烯在生物成像方面的应用潜力。  相似文献   

13.
In this study, a series of secondary‐ and tertiary‐amino‐substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert‐amino groups in benzylamine‐based diselenides by sec‐amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N‐propyl‐ and N‐isopropylamino‐substituted diselenides are 8–18 times more active than the corresponding N,N‐dipropyl‐ and N,N‐diisopropylamine‐based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec‐amino‐substituted diselenides is similar to that of the tert‐amine‐based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx‐like activities. It is observed that the sec‐amino groups are better than the tert‐amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol‐exchange reactions in the selenenyl sulfides derived from sec‐amine‐based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec‐amine‐based compounds are more stable toward further reactions with peroxides than their tert‐amine‐based analogues.  相似文献   

14.
该文以三种母体环糊精(CD),即α-、β-和γ-CD为修饰模板,将功能性基团有机碲引入到环糊精次面的2位羟基上,制备得到了三种具有谷胱甘肽过氧化物酶(GPX)活性的GPX模拟物。采用元素分析、红外光谱、核磁共振等手段对三种环糊精衍生物的结构进行了表征。运用GPX经典双酶体系法测定了三种环糊精衍生物的GPX活性,实验结果表明三者均具有很高的催化活性,其中2-位碲桥联γ-环糊精(2-Te-γ-CD)具有最高的GPX活性,其催化谷胱甘肽(GSH)还原过氧化氢(H2O2),叔丁基过氧化氢(t-BuOOH)和枯烯过氧化氢(CuOOH)的活力分别是传统"小分子硒酶"Ebselen的80.5,333.3和118.3倍。  相似文献   

15.
A theranostic platform with integrated diagnostic and therapeutic functions as well as specific targeted and controlled combination therapy to enhance treatment efficacy is of great importance for a wide range of biomedical applications. Here, we first attempted to develop biocompatible hyaluronic acid (HA)–glutathione (GSH) conjugate stabilized gold nanoclusters (GNCs) combined with graphene oxide (GO), accompanied by loading 5‐fluorouracil (5FU), as a novel theranostic platform (HG‐GNCs/GO‐5FU, HG refers to HA‐GSH). Multifunctional HG‐GNCs possessed excellent fluorescence, photosensitivity and specific targeting ability to the cancer cells while their fluorescence and singlet oxygen generation could be strongly inhibited by GO and then effectively restored by lysosomal hyaluronidase in tumor cells. The sustained and complete release of 5FU from HG‐GNCs/GO could also be stimulated successively by enzymatic degradation of HA and light‐induced heat effect of GO under laser irradiation so that turn‐on cell imaging‐assisted synergistic therapeutic strategies associated with triple enzyme/light‐controlled chemo/photothermal/photodynamic therapy could be achieved at the same time, reducing greatly the side effects of materials to normal cells. Our study presents a novel strategy to combine targeting and bioimaging with triple therapies to enhance the antitumor effect.  相似文献   

16.
Simple synthetic routes for several analogues of the anti-inflammatory organoselenium drug, ebselen, are described. The compounds are characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques and, in some cases, by single-crystal X-ray diffraction studies. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2), tBuOOH, and Cum-OOH as substrates, and thiophenol (PhSH, 4-Me-C(6)H(4)SH) and glutathione (GSH) as cosubstrates. Density functional theory (DFT) calculations have been performed on these systems to understand the effects of various substituents on the (77)Se NMR chemical shifts; these results have been compared with the experimental data. The experimental and theoretical results suggest that the presence of a phenyl substituent on the nitrogen atom is important for the antioxidant activity of ebselen. While ebselen and its analogues are poor catalysts in aromatic thiol assays, these compounds exhibit high GPx activity when GSH is used as the cosubstrate. The poor catalytic activity of ebselen analogues in the presence of aromatic thiols such as PhSH and 4-Me-C(6)H(4)SH can be ascribed to the undesired thiol exchange reaction that takes place at the selenium center due to SeO nonbonding interactions. To understand the effects of different peroxides on the catalytic activities, we have determined the initial rates at various concentrations of GSH and peroxides. These data suggest that the nature of peroxide has little effect on the catalytic efficiencies, although the initial reaction rates observed with hydrogen peroxide were found to be higher than that with tBuOOH and Cum-OOH. In contrast to the effect of peroxides, the nature of thiols appears to have a dramatic effect on the catalytic activity of ebselen and its related derivatives.  相似文献   

17.
Recent innovations highlight the great potential of two‐dimensional graphene oxide (GO) films in water‐related applications. However, undesirable water‐induced effects, such as the redispersion and peeling of stacked GO laminates, greatly limit their performance and impact their practical application. It remains a great challenge to stabilize GO membranes in water. A molecular bridge strategy is reported in which an interlaminar short‐chain molecular bridge generates a robust GO laminate that resists the tendency to swell. Furthermore, an interfacial long‐chain molecular bridge adheres the GO laminate to a porous substrate to increase the mechanical strength of the membrane. By rationally creating and tuning the molecular bridges, the stabilized GO membranes can exhibit outstanding durability in harsh operating conditions, such as cross‐flow, high‐pressure, and long‐term filtration. This general and scalable stabilizing approach for GO membranes provides new opportunities for reliable two‐dimensional laminar films used in aqueous environments.  相似文献   

18.
We report herein the engineering of the surface/interface properties of graphene oxide (GO) films by controllable photoreduction treatment. In our recent works, typical photoreduction processes, including femtosecond laser direct writing (FsLDW), laser holographic lithography, and controllable UV irradiation, have been employed to make conductive reduced graphene oxide (RGO) microcircuits, hierarchical RGO micro‐nanostructures with both superhydrophobicity and structural color, as well as moisture‐responsive GO/RGO bilayer structures. Compared with other reduction protocols, for instance, chemical reduction and thermal annealing, the photoreduction strategy shows distinct advantages, such as mask‐free patterning, chemical‐free modification, controllable reduction degree, and environmentally friendly processing. These works indicate that the surface and interface engineering of GO through controllable photoreduction of GO holds great promise for the development of various graphene‐based microdevices.  相似文献   

19.
Graphene oxide (GO) is effective in catalyzing a wide variety of organic reactions and a few types of polymerization reactions. No radical chain polymerizations catalyzed by GO have been reported. In this article, we probe the catalytic role and acceleration effect of GO for self‐initiated radical chain polymerizations of acrylic acid (AA) in the presence of GO and a pre‐existing polymer, poly(N‐vinylpyrrolidone) (PVP), from a calorimetric perspective. Gelation experiments and DSC studies show that GO can function as a catalyst to accelerate the radical chain polymerization of AA. Isothermal polymerization kinetic data shows that the addition of GO diminishes the induction periods and increases the polymerization rates, as indicated by the much enhanced overall kinetic rate constants and lowered activation energies. The catalytic effect of GO for the polymerization of AA is attributed to the acidity of GO and the hydrogen bonding interactions between GO and monomer molecules and/or polymers.

  相似文献   


20.
Amino acids are important compounds for GO functionalization because they can improve GO properties for many applications ranging from biomedicine to depollution. However, amino acids can act as nucleophiles or as reducing agents for GO functionalization or reduction, respectively. Hence, we systematically studied the GO functionalization/reduction using glycine as a model amino acid under basic conditions at room temperature. Attenuated total reflectance–Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy, and Raman spectroscopy were used to characterize the modified GO with glycine. We found that low glycine concentrations produced an epoxide ring opening reaction, whereas an increase in glycine concentration led to GO reduction. The basic medium allowed to conserve the carboxylic acid groups, whereas the GO reduction mechanism was governed by the partial hydrolysis of epoxide groups and the subsequent reduction of carboxylic acids to carbonyls. This article opens up the opportunity to study and control the conditions in which different amino acids could be used for either GO functionalization or GO reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号