首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most abundant fullerenes, C60 and C70, and all the pure carbon fullerenes larger than C70, follow the isolated‐pentagon rule (IPR). Non‐IPR fullerenes containing adjacent pentagons (APs) have been stabilized experimentally in cases where, according to Euler’s theorem, it is topologically impossible to isolate all the pentagons from each other. Surprisingly, recent experiments have shown that a few endohedral fullerenes, for which IPR structures are possible, are stabilized in non‐IPR cages. We show that, apart from strain, the physical property that governs the relative stabilities of fullerenes is the charge distribution in the cage. This charge distribution is controlled by the number and location of APs and pyrene motifs. We show that, when these motifs are uniformly distributed in the cage and well‐separated from one other, stabilization of non‐IPR endohedral and exohedral derivatives, as well as pure carbon fullerene anions and cations, is the rule, rather than the exception. This suggests that non‐IPR derivatives might be even more common than IPR ones.  相似文献   

2.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

3.
The tri‐tert‐butylphenalenyl (TBPLY) radical exists as a π dimer in the crystal form with perfect overlapping of the singly occupied molecular orbitals (SOMOs) causing strong antiferromagnetic exchange interactions. 2,5‐Di‐tert‐butyl‐6‐oxophenalenoxyl (6OPO) is a phenalenyl‐based air‐stable neutral π radical with extensive spin delocalization and is a counter analogue of phenalenyl in terms of the topological symmetry of the spin density distribution. X‐ray crystal structure analyses showed that 8‐tert‐butyl‐ and 8‐(p‐XC6H4)‐6OPOs (X=I, Br) also form π dimers in the crystalline state. The π‐dimeric structure of 8‐tert‐butyl‐6OPO is seemingly similar to that of TBPLY even though its SOMO–SOMO overlap is small compared with that of TBPLY. The 8‐(p‐XC6H4) derivatives form slipped stacking π dimers in which the SOMO–SOMO overlaps are greater than in 8‐tert‐butyl‐6OPO, but still smaller than in TBPLY. The solid‐state electronic spectra of the 6OPO derivatives show much weaker intradimer charge‐transfer bands, and SQUID measurements for 8‐(p‐BrC6H4)‐6OPO show a weak antiferromagnetic exchange interaction in the π dimer. These results demonstrate that the control of the spin distribution patterns of the phenalenyl skeleton switches the mode of exchange interaction within the phenalenyl‐based π dimer. The formation of the relevant multicenter–two‐electron bonds is discussed.  相似文献   

4.
5.
The tetrabutylammonium (TBA+) salts of square‐planar monoanionic gold complexes of the unsymmetrically substituted Ar,H‐edt2? 1,2‐dithiolene ligands (Ar,H‐edt2?=arylethylene‐1,2‐dithiolato; Ar=phenyl ( 1 ?), 2‐naphthyl ( 2 ?), and 1‐pyrenyl ( 3 ?)) were synthesized and characterized by spectroscopic and electrochemical methods and the corresponding neutral species ( 1 , 2 , and 3 , respectively) were obtained in CH2Cl2 solution at room temperature by diiodine oxidation. The single‐crystal X‐ray diffraction structural data collected for (TBA+)( 2 ?), supported by DFT theoretical calculations, are consistent with the ene‐1,2‐dithiolate form of the ligand and the AuIII oxidation state. All complexes feature intense near‐IR absorptions (at about 1.5 μm) in their neutral states and Vis‐emitting properties in the 400–550 nm range, the energy of which is controlled by the charge of the complex in the case of the 3 ?/ 3 couple. The spectroscopic and electrochemical features of 1 x? and 2 x? (x=0, 1), both in their cis and trans conformations, were investigated by means of DFT and time‐dependent (TD) DFT calculations.  相似文献   

6.
7.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

8.
New compounds [Ru(pap)2(L)](ClO4), [Ru(pap)(L)2], and [Ru(acac)2(L)] (pap=2‐phenylazopyridine, L?=9‐oxidophenalenone, acac?=2,4‐pentanedionate) have been prepared and studied regarding their electron‐transfer behavior, both experimentally and by using DFT calculations. [Ru(pap)2(L)](ClO4) and [Ru(acac)2(L)] were characterized by crystal‐structure analysis. Spectroelectrochemistry (EPR, UV/Vis/NIR), in conjunction with cyclic voltammetry, showed a wide range of about 2 V for the potential of the RuIII/II couple, which was in agreement with the very different characteristics of the strongly π‐accepting pap ligand and the σ‐donating acac? ligand. At the rather high potential of +1.35 V versus SCE, the oxidation of L? into L. could be deduced from the near‐IR absorption of [RuIII(pap)(L.)(L?)]2+. Other intense long‐wavelength transitions, including LMCT (L?→RuIII) and LL/CT (pap.?→L?) processes, were confirmed by TD‐DFT results. DFT calculations and EPR data for the paramagnetic intermediates allowed us to assess the spin densities, which revealed two cases with considerable contributions from L‐radical‐involving forms, that is, [RuIII(pap0)2(L?)]2+?[RuII(pap0)2(L.)]2+ and [RuIII(pap0)(L?)2]+?[RuII(pap0)(L?)(L?)]+. Calculations of electrogenerated complex [RuII(pap.?)(pap0)(L?)] displayed considerable negative spin density (?0.188) at the bridging metal.  相似文献   

9.
The synthesis and single‐crystal X‐ray structural characterization of the first endohedral metallofullerene to contain a heptagon in the carbon cage are reported. The carbon framework surrounding the planar LaSc2N unit in LaSc2N@Cs(hept)‐C80 consists of one heptagon, 13 pentagons, and 28 hexagons. This cage is related to the most abundant Ih‐C80 isomer by one Stone–Wales‐like, heptagon/pentagon to hexagon/hexagon realignment. DFT computations predict that LaSc2N@Cs(hept)‐C80 is more stable than LaSc2N@D5hC80, and suggests that the low yield of the heptagon‐containing endohedral fullerene may be caused by kinetic factors.  相似文献   

10.
Previously reported fused‐pentagon fullerenes stabilized by exohedral derivatization do not share the same cage with those stabilized by endohedral encapsulation. Herein we report the crystallographic identification of #4348C66Cl10, which has the same cage as that of previously reported Sc2@C66. According to the geometrical data of #4348C66Cl10, both strain relief (at the fused pentagons) and local aromaticity (on the remaining sp2‐hybrided carbon framework) contribute to the exohedral stabilization of this long‐sought 66 carbon atom cage.  相似文献   

11.
A series of eight 1‐halo‐8‐(alkylchalcogeno)naphthalene derivatives ( 1 – 8 ; halogen=Br, I; alkylchalcogen=SEt, SPh, SePh, TePh) containing a halogen and a chalcogen atom occupying the peri positions have been prepared and fully characterised by using X‐ray crystallography, multinuclear NMR spectroscopy, IR spectroscopy and MS. Naphthalene distortion due to non‐covalent substituent interactions was studied as a function of the bulk of the interacting chalcogen atoms and the size and nature of the alkyl group attached to them. X‐ray data for 1 , 2 , 4 and 5 – 8 were compared. Molecular structures were analysed in terms of naphthalene ring torsions, peri‐atom displacement, splay angle magnitude, X???E interactions, aromatic ring orientations and quasi‐linear X???E? C arrangements. A general increase in the X???E distance was observed for molecules that contain bulkier atoms at the peri positions. The I???S distance of 4 is comparable with the I???Te distance of 8 , and is ascribed to a stronger lone pair–lone pair repulsion due to the presence of an axial S(naphthyl) ring conformation. Density functional theory (B3LYP) calculations performed on 5 – 8 revealed Wiberg bond index values of 0.05–0.08, which indicate minor interactions taking place between the non‐bonded atoms in these compounds.  相似文献   

12.
The terahertz (THz) spectrum of the pharmaceutical (1R,2S)‐(?)‐ephedrine from 8.0 to 100.0 cm?1 is investigated at liquid‐nitrogen (78.4 K) temperature. The spectrum exhibits several distinct features in this range that are characteristic of the crystal form of the compound. A complete structural analysis and vibrational assignment of the experimental spectrum is performed using solid‐state density functional theory (DFT) and cryogenic single‐crystal X‐ray diffraction. Theoretical modeling of the compound includes an array of density functionals and basis sets with the final assignment of the THz spectrum performed at a PW91/6‐311G(d,p) level of theory, which provides excellent solid‐state simulation agreement with experiment. The solid‐state analysis indicates that the seven experimental spectral features observed at low temperature consist of 13 IR‐active vibrational modes. Of these modes, nine are external crystal vibrations and provide approximately 57 % of the predicted spectral intensity. This study demonstrates that the THz spectra of complex pharmaceuticals may be well reproduced by solid‐state DFT calculations and that inclusion of the crystalline environment is necessary for realistic and accurate simulations.  相似文献   

13.
Four novel nonsymmetrical photochromic diarylethene compounds containing dithieno[3,2‐b:2′,3′‐d]thiophene units were designed and synthesized to investigate their photochromic properties. All these molecules adopt a photoactive antiparallel conformation in single crystals, as revealed by X‐ray crystallographic analysis, and exhibit excellent photochromism in solution as well as in the crystalline phase.  相似文献   

14.
15.
The thermal reaction of the endohedral metallofullerene La2@D2(10611)‐C72, which contains two pentalene units at opposite ends of the cage, with 5,6‐diphenyl‐3‐(2‐pyridyl)‐1,2,4‐triazine proceeded selectively to afford only two bisfulleroid isomers. The molecular structure of one isomer was determined using single‐crystal X‐ray crystallography. The results suggest that the [4+2] cycloaddition was initiated in a highly regioselective manner at the C? C bond connecting two pentagon rings of C72. Subsequent intramolecular electrocyclization followed by cycloreversion resulted in the formation of an open‐cage derivative having three seven‐membered ring orifices on the cage and a significantly elongated cage geometry. The reduction potentials of the open‐cage derivatives were similar to those of La2@D2‐C72 whereas the oxidation potentials were shifted more negative than those of La2@D2‐C72. These results point out that further oxidation could occur easily in the derivatives.  相似文献   

16.
17.
18.
19.
The structure of the canted antiferromagnet β‐p‐NCC6F4CNSSN ( 1 ) was determined from synchrotron powder‐diffraction studies in the pressure range 0–21.6 kbar. Radical 1 crystallizes in the orthorhombic space group Fdd2, but undergoes an asymmetric contraction of the unit‐cell size with increasing pressure. At the molecular level, this contraction of the unit cell is simultaneously accommodated by: 1) an increase in twist angle between aryl and heterocyclic rings; and 2) a shortening of the intermolecular S ??? N contacts, which propagate the magnetic‐exchange pathway. DFT calculations based on the structures in this pressure range revealed an increase in the magnetic‐exchange interaction (J) with increasing pressure, and an excellent correlation was observed between J and the magnetic‐ordering temperature, which increased from 36 K at ambient pressure up to 70 K at 16 kbar.  相似文献   

20.
Melem ( 1 ), as one of the most important representatives of the tri‐s‐triazine compounds, can be used as a nucleophilic reagent in reactions with phthalic acid derivatives. The synthesis of 2,5,8‐triphthalimido‐tri‐s‐triazine (C6N7(phthal)3, 2 ) was investigated starting from phthalic anhydride or phthalic dichloride in various solvents, at different temperatures as well as in the solid state. NMR measurements (solution and solid state), IR spectroscopy and elemental analysis indicated the formation of a cyclic imide. Single‐crystal structure analysis of a 1:1 adduct of 2 with nitromethane proved the molecular structure expected for a phthalimido‐s‐heptazine. DFT calculations were performed to obtain a better insight into the structural features of compound 2 , especially the interaction of the carbonyl groups with the tri‐s‐triazine nitrogen atoms. The title compound 2 shows promising properties: it is thermally stable up to 500 °C in air and shows strong photoluminescence with a maximum emission at around 500 nm. The potential of the nucleophilic reaction of melem with other strong electrophiles provides new targets and prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号