首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
β‐barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three‐dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β‐strands. Here, we employ hydrogen–deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue‐specific kinetics of interstrand hydrogen‐bond formation were found to be uniform in the entire β‐barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long‐lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate‐limiting transition state and thus appears cooperative on the overall folding time scale.  相似文献   

3.
4.
5.
The energy landscapes of human telomeric G‐quadruplexes are complex, and their folding pathways have remained largely unexplored. By using real‐time NMR spectroscopy, we investigated the K+‐induced folding of the human telomeric DNA sequence 5′‐TTGGG(TTAGGG)3A‐3′. Three long‐lived states were detected during folding: a major conformation (hybrid‐1), a previously structurally uncharacterized minor conformation (hybrid‐2), and a partially unfolded state. The minor hybrid‐2 conformation is formed faster than the more stable hybrid‐1 conformation. Equilibration of the two states is slow and proceeds via a partially unfolded intermediate state, which can be described as an ensemble of hairpin‐like structures.  相似文献   

6.
The formation of partially unfolded intermediates through conformational excursions out of the native state is the starting point of many diseases involving protein aggregation. Therapeutic strategies often aim to stabilize the native structure and prevent the formation of intermediates that are also cytotoxic in vivo. However, their transient nature and low population makes it difficult to characterize these intermediates. We have probed the backbone dynamics of transthyretin (TTR) over an extended timescale by using NMR spectroscopy and MD simulations. The location and extent of these motions indicates that the backbone flexibility of TTR is a cause of dissociation and destabilization, both of which are responsible for fibril formation. Importantly, approximately 10 % of wild‐type TTR exists in an intermediate state, which increased to up to 28 % for pathogenic TTR mutants, for which the formation of the intermediate state is shown to be energetically more favorable compared to the wild type. This result suggests an important role for the intermediates in TTR amyloidosis.  相似文献   

7.
The energetic and volumetric properties of a three‐state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been investigated using pressure‐dependent 15N‐relaxation dispersion NMR from 1 to 2500 bar. Changes in partial molar volumes (ΔV) and isothermal compressibilities (ΔκT) between all the states along the folding pathway have been determined to reasonable accuracy. The partial volume and isothermal compressibility of the folded state are 100 mL mol?1 and 40 μL mol?1 bar?1, respectively, higher than those of the unfolded ensemble. Of particular interest are the findings related to the energetic and volumetric properties of the on‐pathway folding intermediate. While the latter is energetically close to the unfolded state, its volumetric properties are similar to those of the folded protein. The compressibility of the intermediate is larger than that of the folded state reflecting the less rigid nature of the former relative to the latter.  相似文献   

8.
The analysis of the folding mechanism in peptides adopting well‐defined secondary structure is fundamental to understand protein folding. Herein, we describe the thermal unfolding of a 15‐mer vascular endothelial growth factor mimicking α‐helical peptide (QKL10A) through the combination of spectroscopic and computational analyses. In particular, on the basis of the temperature dependencies of QKL10A Hα chemical shifts we show that the first phase of the thermal helix unfolding, ending at around 320 K, involves mainly the terminal regions. A second phase of the transition, ending at around 333 K, comprises the central helical region of the peptide. The determination of high‐resolution QKL10A conformational preferences in water at 313 K allowed us to identify, at atomic resolution, one intermediate of the folding–unfolding pathway. Molecular dynamics simulations corroborate experimental observations detecting a stable central helical turn, which represents the most probable site for the helix nucleation in the folding direction. The data presented herein allows us to draw a folding–unfolding picture for the small peptide QKL10A compatible with the nucleation–propagation model. This study, besides contributing to the basic field of peptide helix folding, is useful to gain an insight into the design of stable helical peptides, which could find applications as molecular scaffolds to target protein–protein interactions.  相似文献   

9.
A protein can exist in multiple states under native conditions and those states with low populations are often critical to biological function and self‐assembly. To investigate the role of the minor states of an acyl carrier protein, NMR techniques were applied to determine the number of minor states and characterize their structures and kinetics. The acyl carrier protein from Micromonospora echinospora was found to exist in one major folded state (95.2 %), one unfolded state (4.1 %), and one intermediate state (0.7 %) under native conditions. The three states are in dynamic equilibrium and the intermediate state very likely adopts a native‐like structure and is an off‐pathway folding product. The intermediate state may mediate the formation of oligomers in vitro and play an important role in the recognition of partner enzymes in vivo.  相似文献   

10.
Sequence inversion in G‐rich DNA from 5′→3′ to 3′→5′ exerts a substantial effect on the number of structures formed, while the type of G‐quadruplex fold is in fact determined by the presence of K+ or Na+ ions. The melting temperatures of G‐quadruplexes adopted by oligonucleotides with sequences in the 5′→3′ direction are higher than those of their 3′→5′ counterparts with both KCl and NaCl. CD, UV, and NMR spectroscopy demonstrates the importance of primary sequence for the structural diversity of G‐quadruplexes. The changes introduced by mere sequence reversal of the G‐rich DNA segment have a substantial impact on the polymorphic nature of the resulting G‐quadruplexes and their potential physiological roles. The insights resulting from this study should enable extension of the empirical rules for the prediction of G‐quadruplex topology.  相似文献   

11.
Despite its wide use as a denaturant, the mechanism by which guanidinium (Gdm+) induces protein unfolding remains largely unclear. Herein, we show evidence that Gdm+ can induce denaturation by disrupting salt bridges that stabilize the folded conformation. We study the Gdm+‐induced denaturation of a series of peptides containing Arg/Glu and Lys/Glu salt bridges that either stabilize or destabilize the folded conformation. The peptides containing stabilizing salt bridges are found to be denatured much more efficiently by Gdm+ than the peptides containing destabilizing salt bridges. Complementary 2D‐infrared measurements suggest a denaturation mechanism in which Gdm+ binds to side‐chain carboxylate groups involved in salt bridges.  相似文献   

12.
A dendrimeric trimer undergoes folding and unfolding in response to a chemical stimulus. The trimer of interest contains a central dendrimer with a butadiyne‐linked zinc porphyrin dimer ((ZnP)2) core, in addition to two terminal dendrimers with zinc porphyrin (ZnP) cores. The obtained absorption spectra indicate that the unfolded form is the exclusive conformer in chloroform, while the addition of 1,4‐diazabicyclo[2.2.2]octane (DABCO) in chloroform leads to transformation from the unfolded to the folded structure containing two DABCO units per trimer; the folded structure originates from the cross‐linking of (ZnP)2 and ZnP with DABCO. Moreover, the addition of excess DABCO promotes the generation of the unfolded structure containing four DABCO units.  相似文献   

13.
The misfolding and aggregation of the protein α‐synuclein (α‐syn), which results in the formation of amyloid fibrils, is involved in the pathogenesis of Parkinson’s disease and other synucleinopathies. The emergence of amyloid toxicity is associated with the formation of partially folded aggregation intermediates. Here, we engineered a class of binding proteins termed β‐wrapins (β‐wrap proteins) with affinity for α‐synuclein (α‐syn). The NMR structure of an α‐syn:β‐wrapin complex reveals a β‐hairpin of α‐syn comprising the sequence region α‐syn(37–54). The β‐wrapin inhibits α‐syn aggregation and toxicity at substoichiometric concentrations, demonstrating that it interferes with the nucleation of aggregation.  相似文献   

14.
High-hydrostatic pressure is an alternative perturbation method that can be used to destabilize globular proteins. Generally perfectly reversible, pressure exerts local effects on regions or domains of a protein containing internal voids, contrary to heat or chemical denaturant that destabilize protein structures uniformly. When combined with NMR spectroscopy, high pressure (HP) allows one to monitor at a residue-level resolution the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. The use of HP-NMR has long been hampered by technical difficulties. Owing to the recent development of commercially available high-pressure sample cells, HP-NMR experiments can now be routinely performed. This review summarizes recent advances of HP-NMR techniques for the characterization at a quasi-atomic resolution of the protein folding energy landscape.  相似文献   

15.
Mononuclear molybdoenzymes catalyze a broad range of redox reactions and are highly conserved in all kingdoms of life. This study addresses the question of how the Mo cofactor (Moco) is incorporated into the apo form of human sulfite oxidase (hSO) by using site‐directed spin labeling to determine intramolecular distances in the nanometer range. Comparative measurements of the holo and apo forms of hSO enabled the localization of the corresponding structural changes, which are localized to a short loop (residues 263–273) of the Moco‐containing domain. A flap‐like movement of the loop provides access to the Moco binding‐pocket in the apo form of the protein and explains the earlier studies on the in vitro reconstitution of apo‐hSO with Moco. Remarkably, the loop motif can be found in a variety of structurally similar molybdoenzymes among various organisms, thus suggesting a common mechanism of Moco incorporation.  相似文献   

16.
17.
In situ solid‐state NMR spectroscopy is exploited to monitor the structural evolution of a glycine/water glass phase formed on flash cooling an aqueous solution of glycine, with a range of modern solid‐state NMR methods applied to elucidate structural properties of the solid phases present. The glycine/water glass is shown to crystallize into an intermediate phase, which then transforms to the β polymorph of glycine. Our in situ NMR results fully corroborate the identity of the intermediate crystalline phase as glycine dihydrate, which was first proposed only very recently.  相似文献   

18.
Because of the absence of methods for tracking RNA G‐quadruplex dynamics, especially the folding and unfolding of this attractive structure in live cells, understanding of the biological roles of RNA G‐quadruplexes is so far limited. Herein, we report a new red‐emitting fluorescent probe, QUMA‐1 , for the selective, continuous, and real‐time visualization of RNA G‐quadruplexes in live cells. The applications of QUMA‐1 in several previously intractable applications, including live‐cell imaging of the dynamic folding, unfolding, and movement of RNA G‐quadruplexes and the visualization of the unwinding of RNA G‐quadruplexes by RNA helicase have been demonstrated. Notably, our real‐time results revealed the complexity of the dynamics of RNA G‐quadruplexes in live cells. We anticipate that the further application of QUMA‐1 in combination with appropriate biological and imaging methods to explore the dynamics of RNA G‐quadruplexes will uncover more information about the biological roles of RNA G‐quadruplexes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号