首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis of small‐molecule Cu2O2 adducts has provided insight into the related biological systems and their reactivity patterns including the interconversion of the CuII2(μ‐η22‐peroxo) and CuIII2(μ‐oxo)2 isomers. In this study, absorption spectroscopy, kinetics, and resonance Raman data show that the oxygenated product of [(BQPA)CuI]+ initially yields an “end‐on peroxo” species, that subsequently converts to the thermodynamically more stable “bis‐μ‐oxo” isomer (Keq=3.2 at ?90 °C). Calibration of density functional theory calculations to these experimental data suggest that the electrophilic reactivity previously ascribed to end‐on peroxo species is in fact a result of an accessible bis‐μ‐oxo isomer, an electrophilic Cu2O2 isomer in contrast to the nucleophilic reactivity of binuclear CuII end‐on peroxo species. This study is the first report of the interconversion of an end‐on peroxo to bis‐μ‐oxo species in transition metal‐dioxygen chemistry.  相似文献   

2.
Mononuclear metal–dioxygen species are key intermediates that are frequently observed in the catalytic cycles of dioxygen activation by metalloenzymes and their biomimetic compounds. In this work, a side‐on cobalt(III)–peroxo complex bearing a macrocyclic N‐tetramethylated cyclam (TMC) ligand, [CoIII(15‐TMC)(O2)]+, was synthesized and characterized with various spectroscopic methods. Upon protonation, this cobalt(III)–peroxo complex was cleanly converted into an end‐on cobalt(III)–hydroperoxo complex, [CoIII(15‐TMC)(OOH)]2+. The cobalt(III)–hydroperoxo complex was further converted to [CoIII(15‐TMC‐CH2‐O)]2+ by hydroxylation of a methyl group of the 15‐TMC ligand. Kinetic studies and 18O‐labeling experiments proposed that the aliphatic hydroxylation occurred via a CoIV–oxo (or CoIII–oxyl) species, which was formed by O? O bond homolysis of the cobalt(III)–hydroperoxo complex. In conclusion, we have shown the synthesis, structural and spectroscopic characterization, and reactivities of mononuclear cobalt complexes with peroxo, hydroperoxo, and oxo ligands.  相似文献   

3.
The bis(μ‐oxo)dicopper(III) species [CuIII2(μ‐O)2(m‐XYLMeAN)]2+ ( 1 ) promotes the electrophilic ortho‐hydroxylation–defluorination of 2‐fluorophenolates to give the corresponding catechols, a reaction that is not accomplishable with a (η22‐O2)dicopper(II) complex. Isotopic labeling studies show that the incoming oxygen atom originates from the bis(μ‐oxo) unit. Ortho‐hydroxylation–defluorination occurs selectively in intramolecular competition with other ortho‐substituents such as chlorine or bromine.  相似文献   

4.
The strikingly different reactivity of a series of homo‐ and heterodinuclear [(MIII)(μ‐O)2(MIII)′]2+ (M=Ni; M′=Fe, Co, Ni and M=M′=Co) complexes with β‐diketiminate ligands in electrophilic and nucleophilic oxidation reactions is reported, and can be correlated to the spectroscopic features of the [(MIII)(μ‐O)2(MIII)′]2+ core. In particular, the unprecedented nucleophilic reactivity of the symmetric [NiIII(μ‐O)2NiIII]2+ complex and the decay of the asymmetric [NiIII(μ‐O)2CoIII]2+ core through aromatic hydroxylation reactions represent a new domain for high‐valent bis(μ‐oxido)dimetal reactivity.  相似文献   

5.
The characterization of intermediates formed through the reaction of transition‐metal complexes with dioxygen (O2) is important for understanding oxidation in biological and synthetic processes. Here, the reaction of the diketiminate‐supported cobalt(I) complex LtBuCo with O2 gives a rare example of a side‐on dioxygen complex of cobalt. Structural, spectroscopic, and computational data are most consistent with its assignment as a cobalt(III)–peroxo complex. Treatment of LtBuCo(O2) with low‐valent Fe and Co diketiminate complexes affords isolable oxo species with M2O2 “diamond” cores, including the first example of a crystallographically characterized heterobimetallic bis(μ‐oxo) complex of two transition metals. The bimetallic species are capable of cleaving C−H bonds in the supporting ligands, and kinetic studies show that the Fe/Co heterobimetallic species activates C−H bonds much more rapidly than the Co/Co homobimetallic analogue. Thus heterobimetallic oxo intermediates provide a promising route for enhancing the rates of oxidation reactions.  相似文献   

6.
In order to model the asymmetric active site of the type‐3 copper enzyme tyrosinase the “doubly asymmetric” binucleating ligand 1‐[bis‐N,N‐(pyrid‐2‐ylmethyl)aminomethyl]‐3‐[N‐(pyrid‐2‐ylmethyl)‐N‐(2‐pyrid‐2‐ylethyl)aminomethyl]benzene (“unsDMPA”) is synthesized and coordinated to copper(I). The O2‐reactivity of the CuI(unsDMPA) complex and its analog derived from the symmetric counterpiece of unsDMPA, DMPA, is investigated. Oxygenation in methanol leads to dicopper(II) bis(μ‐hydroxo) and bis(μ‐methanolato) complexes; the dicopper(II) bis(μ‐hydroxo) complex of the unsDMPA ligand is chiral. Oxygenation in dichloromethane leads to oxidative N‐dealkylation. This is attributed to a tendency of DMPA and unsDMPA complexes to form dicopper bis(μ‐oxo) intermediates, as evidenced by DFT. The implications of these results with respect to the design of tyrosinase model systems are discussed.  相似文献   

7.
This study deals with the unprecedented reactivity of dinuclear non‐heme MnII–thiolate complexes with O2, which dependent on the protonation state of the initial MnII dimer selectively generates either a di‐μ‐oxo or μ‐oxo‐μ‐hydroxo MnIV complex. Both dimers have been characterized by different techniques including single‐crystal X‐ray diffraction and mass spectrometry. Oxygenation reactions carried out with labeled 18O2 unambiguously show that the oxygen atoms present in the MnIV dimers originate from O2. Based on experimental observations and DFT calculations, evidence is provided that these MnIV species comproportionate with a MnII precursor to yield μ‐oxo and/or μ‐hydroxo MnIII dimers. Our work highlights the delicate balance of reaction conditions to control the synthesis of non‐heme high‐valent μ‐oxo and μ‐hydroxo Mn species from MnII precursors and O2.  相似文献   

8.
High‐valent manganese(IV or V)–oxo porphyrins are considered as reactive intermediates in the oxidation of organic substrates by manganese porphyrin catalysts. We have generated MnV– and MnIV–oxo porphyrins in basic aqueous solution and investigated their reactivities in C? H bond activation of hydrocarbons. We now report that MnV– and MnIV–oxo porphyrins are capable of activating C? H bonds of alkylaromatics, with the reactivity order of MnV–oxo>MnIV–oxo; the reactivity of a MnV–oxo complex is 150 times greater than that of a MnIV–oxo complex in the oxidation of xanthene. The C? H bond activation of alkylaromatics by the MnV– and MnIV–oxo porphyrins is proposed to occur through a hydrogen‐atom abstraction, based on the observations of a good linear correlation between the reaction rates and the C? H bond dissociation energy (BDE) of substrates and high kinetic isotope effect (KIE) values in the oxidation of xanthene and dihydroanthracene (DHA). We have demonstrated that the disproportionation of MnIV–oxo porphyrins to MnV–oxo and MnIII porphyrins is not a feasible pathway in basic aqueous solution and that MnIV–oxo porphyrins are able to abstract hydrogen atoms from alkylaromatics. The C? H bond activation of alkylaromatics by MnV– and MnIV–oxo species proceeds through a one‐electron process, in which a MnIV–‐oxo porphyrin is formed as a product in the C? H bond activation by a MnV–oxo porphyrin, followed by a further reaction of the MnIV–oxo porphyrin with substrates that results in the formation of a MnIII porphyrin complex. This result is in contrast to the oxidation of sulfides by the MnV–oxo porphyrin, in which the oxidation of thioanisole by the MnV–oxo complex produces the starting MnIII porphyrin and thioanisole oxide. This result indicates that the oxidation of sulfides by the MnV–oxo species occurs by means of a two‐electron oxidation process. In contrast, a MnIV–oxo porphyrin complex is not capable of oxidizing sulfides due to a low oxidizing power in basic aqueous solution.  相似文献   

9.
The title compound, [Mn2(μ‐O)(C6H3NO3)2(C5H5N)4]·H2O, was isolated from the reaction of 2,6‐pyridine­di­carboxylic acid with [Mn12O12(CH3COO)16(H2O)4] in pyridine. The dimanganese complex has twofold symmetry; the MnIII atoms are bridged by one oxo and two amidate ligands and show compressed octahedral Jahn–Teller distortion. The molecular packing comprises a three‐dimensional structure constructed by means of extensive intermolecular interactions, including three kinds of hydrogen bonds and π–π interactions.  相似文献   

10.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes of macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,8,11‐tetraazacyclotetradecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,7,10‐tetraazacyclododecane) with thiosulfate has been carried out by spectrophotometry in aqueous buffer at 30°C. Reaction between complex 1 and thiosulfate follows a first‐order rate saturation kinetics. The pH dependency and kinetic evidences suggest the participation of two complex species of MnIII(μ‐O)2MnIV under the experimental conditions. Detailed kinetic study shows that reduction of 2 proceeds through an autocatalytic path where the intermediate (MnIII)2 species has been assumed to catalyze the reaction. The difference in the reaction mechanisms is ascribed to the difference in stability of the intermediate complex species, the evidence for which comes from the electrochemical behavior of the complexes and time dependent EPR spectroscopic measurements during the reduction of 2 . © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 119–128, 2004  相似文献   

11.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

12.
Kinetic studies on the oxidation of 2‐mercaptosuccinic acid by dinuclear [Mn2III/IV(μ‐O)2(cyclam)2](ClO4)3] ( 1 ) (abbreviated as MnIII–MnIV) (cyclam = 1,4,8,11‐tetraaza‐cyclotetradecane) have been carried out in aqueous medium in the pH range of 4.0–6.0, in the presence of acetate buffer at 30°C by UV–vis spectrophotometry. In the pH region, two species of complex 1 (MnIII–MnIV and MnIII–MnIVH, the later being μ‐O protonated form) were found to be kinetically significant. The first‐order dependence of the rate of the reactions on [Thiol] both in presence and absence of externally added copper(II) ions, first‐order dependence on [Cu2+] and a decrease of rate of the reactions with increase in pH have been rationalized by suitable sequence of reactions. Protonation of μ‐O bridge of 1 is evidenced by the perchloric acid catalyzed decomposition of 1 to mononuclear Mn(III) and Mn(IV) complex observed by UV–vis and EPR spectroscopy. The kinetic features have been rationalized considering Cu(RSH) as the reactive intermediate. EPR spectroscopy lends support for this. The formation of a hydrogen bonded outer‐sphere adduct between the reductant and the complex in the lower pH range prior to electron transfer reactions is most likely to occur. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 170–177 2004  相似文献   

13.
Reactions of nonheme FeIII–superoxo and MnIV–peroxo complexes bearing a common tetraamido macrocyclic ligand (TAML), namely [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2?, with nitric oxide (NO) afford the FeIII–NO3 complex [(TAML)FeIII(NO3)]2? and the MnV–oxo complex [(TAML)MnV(O)]? plus NO2?, respectively. Mechanistic studies, including density functional theory (DFT) calculations, reveal that MIII–peroxynitrite (M=Fe and Mn) species, generated in the reactions of [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2? with NO, are converted into MIV(O) and .NO2 species through O?O bond homolysis of the peroxynitrite ligand. Then, a rebound of FeIV(O) with .NO2 affords [(TAML)FeIII(NO3)]2?, whereas electron transfer from MnIV(O) to .NO2 yields [(TAML)MnV(O)]? plus NO2?.  相似文献   

14.
For well over 20 years, μ‐oxo‐diiron corroles, first reported by Vogel and co‐workers in the form of μ‐oxo‐bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s?1, ΔEQ 2.35 mm s?1), have been thought of as comprising a pair antiferromagnetically coupled low‐spin FeIV centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)‐oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not FeIV but intermediate‐spin FeIII coupled to a corrole.2?. The intramolecular spin couplings in {Fe[TPC]}2(μ‐O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg–Dirac–van Vleck spin Hamiltonian H=JFe–corrole(SFe?Scorrole)+JFe–Fe′(SFe?SFe′)+JFe′–corrole(SFe′?Scorrole′), which yielded JFe–corrole=JFe′–corrole′=0.355 eV (2860 cm?1) and JFe–Fe′=0.068 eV (548 cm?1). The unexpected stability of μ‐oxo‐diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence.  相似文献   

15.
In acetate buffer media (pH 4.5–5.4) thiosulfate ion (S2O32?) reduces the bridged superoxo complex, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]4+ ( 1 ) to its corresponding μ‐peroxo product, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]3+ ( 2 ) and along a parallel reaction path, simultaneously S2O32? reacts with 1 to produce the substituted μ‐thiosulfato‐μ‐superoxo complex, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]3+ ( 3 ). The formation of μ‐thiosulfato‐μ‐superoxo complex ( 3 ) appears as a precipitate which on being subjected to FTIR shows absorption peaks that support the presence of Co(III)‐bound S‐coordinated S2O32? group. In reaction media, 3 readily dissolves to further react with S2O32? to produce μ‐thiosulfato‐μ‐peroxo product, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]2+ ( 4 ). The observed rate (k0) increases with an increase in [TThio] ([TThio] is the analytical concentration of S2O32?) and temperature (T), but it decreases with an increase in [H+] and the ionic strength (I). Analysis of the log At versus time data (A is the absorbance of 1 at time t) reveals that overall the reaction follows a biphasic consecutive reaction path with rate constants k1 and k2 and the change of absorbance is equal to {a1 exp(–k1t) + a2 exp(–k2t)}, where k1 > k2.  相似文献   

16.
Redox‐inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal–oxygen intermediates, such as metal–oxo and metal–peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)–oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate‐determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3) by iron(III)–oxo complexes. All logarithms of the observed second‐order rate constants of Lewis acid‐promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)–oxo complexes exhibit remarkably unified correlations with the driving forces of proton‐coupled electron transfer (PCET) and metal ion‐coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal–oxo moiety has been confirmed for MnIV–oxo complexes. The enhancement of the electron‐transfer reactivity of metal–oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox‐inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)–peroxo complexes, resulting in acceleration of the electron‐transfer reduction but deceleration of the electron‐transfer oxidation. Such a control on the reactivity of metal–oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca2+ in the oxidation of water to dioxygen by the oxygen‐evolving complex in photosystem II.  相似文献   

17.
The reaction of the trans‐hyponitrito complex [Ru2(CO)4(μ‐η2‐ONNO)(μ‐H)(μ‐PtBu2)(μ‐dppen)] ( 1 , dppen = Ph2PC(=CH2)PPh2) with tetrafluorido boric acid afforded the new complex salt [Ru2(CO)4(μ‐η2‐ONNOH)(μ‐H)(μ‐PtBu2)(μ‐dppen)]BF4 ( 2 ) containing the monoprotonate hyponitrous acid as the ligand in the cationic complex. Complex 1 showed a nucleophilic reactivity towards the trimethyloxonium cation resulting in the monoester derivative of the hyponitrous acid [Ru2(CO)4(μ‐η2‐ONNOMe)(μ‐H)(μ‐PtBu2)(μ‐dppen)]BF4 ( 3 ). During heating of compound 2 in ethanol under reflux for a short time nitrous oxide was liberated affording unexpectedly a new tridentate 2, 2‐bis(diphenylphosphanyl)ethanolato ligand formed by an intramolecular attack of an intermediate hydroxido ligand towards the unsaturated carbon carbon double bond in the bridging dppen ligand. Thus the complex salt [Ru2(CO)4{μ‐η3‐OCH2CH(PPh2)2}(μ‐H)(μ‐PtBu2)]BF4 ( 4 ) was formed in good yields. The new compounds 2 , 3 , and 4 were characterized by spectroscopic means as well as their molecular structures were determined in the crystal.  相似文献   

18.
Ribonucleotide reductases (RNRs) are essential enzymes required for DNA synthesis. In class Ib Mn2 RNRs superoxide (O2.?) was postulated to react with the MnII2 core to yield a MnIIMnIII‐peroxide moiety. The reactivity of complex 1 ([MnII2(O2CCH3)2(BPMP)](ClO4), where HBPMP=2,6‐bis{[(bis(2‐pyridylmethyl)amino]methyl}‐4‐methylphenol) towards O2.? was investigated at ?90 °C, generating a metastable species, 2 . The electronic absorption spectrum of 2 displayed features (λmax=440, 590 nm) characteristic of a MnIIMnIII‐peroxide species, representing just the second example of such. Electron paramagnetic resonance and X‐ray absorption spectroscopies, and mass spectrometry supported the formulation of 2 as a MnIIMnIII‐peroxide complex. Unlike all other previously reported Mn2‐peroxides, which were unreactive, 2 proved to be a capable oxidant in aldehyde deformylation. Our studies provide insight into the mechanism of O2‐activation in Class Ib Mn2 RNRs, and the highly reactive intermediates in their catalytic cycle.  相似文献   

19.
A new MnIII‐Schiff base complex, [MnL(OH2)](ClO4) ( 1 ) (H2L = N, N′‐bis‐(3‐Br‐5‐Cl‐salicylidene)‐1, 2‐diimino‐2‐methylethane), an inorganic model of the catalytic center (OEC, Oxygen Evolving Complex) in photosystem II (PSII), has been synthesized and characterized by elemental analysis, IR and EPR spectroscopy, mass spectrometry, magnetic susceptibility measurement and the study of its redox properties by cyclic and normal pulse voltammetry. This complex mimics reactivity (showing a relevant photolytic activity), and also some structural characteristics (parallel‐mode MnIII EPR signal from partially assembled OEC cluster) of the natural OEC. The complex 1 was found to rearrange in solution into a crystallographically solved square‐pyramidal complex, [MnLL′] ( 2 ) (HL′ = 6‐bromo‐4‐chloro‐2‐cyanophenol), through a process, which probably liberates radical species (detected by EPR), and provokes a C—N bond cleavage in the ligand. A photo‐radical mechanism is discussed to explain this rearrangement.  相似文献   

20.
Manganese(IV)‐oxo complexes are often invoked as intermediates in Mn‐catalyzed C−H bond activation reactions. While many synthetic MnIV‐oxo species are mild oxidants, other members of this class can attack strong C−H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of MnIV‐oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the MnIV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K‐edge X‐ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen‐atom and oxygen‐atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these MnIV‐oxo complexes, the rate enhancements are correlated with both 1) the energy of a low‐lying 4E excited state, which has been postulated to be involved in a two‐state reactivity model, and 2) the MnIII/IV reduction potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号