首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hybrids based on 1,8‐disubstituted carbazole, 1,8‐OXDCz and 1,8‐mBICz , have been designed and synthesized through a facile process. The incorporation of oxadiazole or N‐phenylbenzimidazole moieties at the 1,8‐positions of carbazole greatly improves its morphological stability, giving glass transition temperatures (Tg) as high as 138 and 154 °C, respectively. Blue phosphorescent organic light‐emitting devices (PhOLEDs) with 1,8‐mBICz exhibit almost the same performance as a similarly structured device based on the mCP host, and green PhOLEDs employing the new host material 1,8‐OXDCz exhibit an ideal turn‐on voltage (2.5 V at 1.58 cd m?2), a maximum current efficiency (ηc,max) of 73.9 cd A?1, and a power efficiency (ηp,max) of 89.7 lm W?1. These results are among the best performances of [Ir(ppy)3]‐based devices with simple device configurations.  相似文献   

2.
《化学:亚洲杂志》2017,12(23):3069-3076
Typical π–π stacking and aggregation‐caused quenching could be suppressed in the film‐state by the spiro conformation molecular design in the field of organic light‐emitting diodes (OLEDs). Herein, a novel deep‐blue fluorescent material with spiro conformation, 1‐(4‐(tert ‐butyl)phenyl)‐2‐(4‐(10‐phenyl‐10H ‐spiro[acridine‐9,9′‐fluoren]‐2‐yl)phenyl)‐1H ‐phenanthro[9,10‐d ]imidazole ( SAF‐BPI ), was designed and synthesized. The compound consists of spiro‐acridine‐fluorene (SAF) as donor part and phenanthroimidazole (BPI) as acceptor part. Owing to the rigid SAF skeleton, this compound exhibits a high thermal stability with a glass transition temperature (T g) of 198 °C. The compound exhibits bipolar transporting characteristics demonstrated by the single‐carrier devices. The non‐doped OLEDs based on the SAF‐BPI as the emitting layer shows maximum emission at 448 nm, maximum luminance of 2122 cd m−2, maximum current efficiency (CE) of 3.97 cd A−1, and a maximum power efficiency of 2.08 lm W−1. The chromaticity coordinate is stable at (0.15, 0.10) at the voltage of 7–11 V. The device shows a slow efficiency roll‐off with CE of 3.35 and 2.85 cd A−1 at 100 and 1000 cd m−2, respectively.  相似文献   

3.
A new triphenylamine‐bridged fluoranthene derivative, 4‐(7,10‐diphenylfluoranthen‐8‐yl)‐N‐[4‐(7,10‐diphenylfluoranthen‐8‐yl)phenyl]‐N‐phenylaniline (BDPFPA), with a high glass transition temperature of 220 °C has been synthesized and characterized. BDPFPA is a highly fluorescent and versatile material that can be used as a nondoped green emitter and as a hole transporter. BDPFPA was used in a standard trilayer device as the emitting layer, which showed a low turn‐on voltage (<3 V) and a high efficiency of 11.6 cd A?1. The device also shows little efficiency roll‐off at high brightness. For example, the efficiency can still be maintained at 11.4 cd A?1 (5.4 lm W?1) at a brightness of 10 000 cd m?2. These results are among the best reported for nondoped fluorescent green organic light‐emitting diodes. A simple bilayer device, in which BDPFPA serves as a hole‐transporting layer, has a maximum power efficiency of 3.3 lm W?1 and the performance is nearly 40 % higher than that of an N,N′‐bis(1‐naphthyl)‐N,N′‐ diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB)‐based standard device.  相似文献   

4.
To achieve high efficiencies in blue phosphorescent organic light‐emitting diodes (PhOLEDs), the triplet energies (T1) of host materials are generally supposed to be higher than the blue phosphors. A small organic molecule with low singlet energy (S1) of 2.80 eV and triplet energy of 2.71 eV can be used as the host material for the blue phosphor, [bis(4,6‐difluorophenylpyridinato‐N,C2′)iridium(III)] tetrakis(1‐pyrazolyl)borate (FIr6; T1=2.73 eV). In both the photo‐ and electro‐excited processes, the energy transfer from the host material to FIr6 was found to be efficient. In a three organic‐layer device, the maximum current efficiency of 37 cd A?1 and power efficiency of 40 Lm W?1 were achieved for the FIr6‐based blue PhOLEDs.  相似文献   

5.
By combining the iridium(III) ppy‐type complex (Hppy=2‐phenylpyridine) with a square‐planar platinum(II) unit, some novel phosphorescent oligometallaynes bearing dual metal centers (viz. IrIII and PtII) were developed by combining trans‐[Pt(PBu3)2Cl2] with metalloligands of iridium possessing bifunctional pendant acetylene groups. Photophysical and computational studies indicated that the phosphorescent excited states arising from these oligometallaynes can be ascribed to the triplet emissive IrIII ppy‐type chromophore, owing to the obvious trait (such as the longer phosphorescent lifetime at 77 K) also conferred by the PtII center. So, the two different metal centers show a synergistic effect in governing the photophysical behavior of these heterometallic oligometallaynes. The inherent nature of these amorphous materials renders the fabrication of simple solution‐processed doped phosphorescent organic light‐emitting diodes (PHOLEDs) feasible by effectively blocking the close‐packing of the host molecules. Saliently, such a synergistic effect is also important in affording decent device performance for the solution‐processed PHOLEDs. A maximum brightness of 3 356 cd m?2 (or 2 708 cd m?2), external quantum efficiency of 0.50 % (or 0.67 %), luminance efficiency of 1.59 cd A?1 (or 1.55 cd A?1), and power efficiency of 0.60 Lm W?1 (or 0.55 Lm W?1) for the yellow (or orange) phosphorescent PHOLEDs can be obtained. These results show the great potential of these bimetallic emitters for organic light‐emitting diodes.  相似文献   

6.
Two new bipolar compounds, N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐4,4′′‐diamine ( 1 ) and N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐3,3′′‐diamine ( 2 ), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass‐transition temperatures of 109–129 °C and thermal decomposition temperatures of 501–531 °C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater π conjugation between the donor and acceptor moieties. A nondoped deep‐blue fluorescent organic light‐emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A−1 and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee’s blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A−1 and a maximum power efficiency of 68.3 lm W−1; whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A−1, and a maximum power efficiency of 9.8 lm W−1. The relationship between the molecular structures and optoelectronic properties are discussed.  相似文献   

7.
In this study, we synthesized and characterized a series of spirobifluorene‐based bipolar compounds (D2 ACN, DNPACN, DNTACN, and DCzACN) in which a dicyano‐substituted biphenyl branch, linked orthogonally to a donor biphenyl branch bearing various diarylamines, acted as an acceptor unit allowing fine‐tuning of the morphological stability, triplet energy, bipolar transport behavior, and the HOMO and LUMO energy levels. The promising physical properties of these new compounds, together with their ability to transport electrons and holes with balanced mobilities, made them suitable for use as host materials in highly efficient phosphorescent organic light‐emitting diodes (PhOLEDs) with green iridium‐based‐ or red osmium‐based phosphors as the emitting layer (EML). We adopted a multilayer structure to efficiently confine holes and electrons within the EML, thus preventing exciton diffusion and improving device efficiency. The device incorporating D2 ACN doped with the red emitter [Os(bpftz)2(PPhMe2)2] (bpftz=3‐(trifluoromethyl)‐5‐(4‐tert‐butylpyridyl)‐1,2,4‐triazolate) gave a saturated red electrophosphorescence with CIE coordinates of (0.65, 0.35) and remarkably high efficiencies of 20.3 % (21 cd A?1) and 13.5 Lm W?1 at a practical brightness of 1000 cd m?2.  相似文献   

8.
A new class of four‐coordinate donor‐acceptor fluoroboron‐containing thermally activated delayed fluorescence (TADF) compounds bearing a tridentate 2,2′‐(pyridine‐2,6‐diyl)diphenolate (dppy) ligand has been successfully designed and synthesized. Upon varying the donor moieties from carbazole to 10H‐spiro[acridine‐9,9′‐fluorene] to 9,9‐dimethyl‐9,10‐dihydroacridine, these boron derivatives exhibit a wide range of emission colors spanning from blue to yellow with a large spectral shift of 2746 cm?1, with high PLQYs of up to 96 % in the doped thin film. Notably, vacuum‐deposited organic light‐emitting devices (OLEDs) made with these boron compounds demonstrate high performances with the best current efficiencies of 55.7 cd A?1, power efficiencies of 58.4 lm W?1 and external quantum efficiencies of 18.0 %. More importantly, long operational stabilities of the green‐emitting OLEDs based on 2 with half‐lifetimes of up to 12 733 hours at an initial luminance of 100 cd m?2 have been realized. This work represents for the first time the design and synthesis of tridentate dppy‐chelating four‐coordinate boron TADF compounds for long operational stabilities, suggesting great promises for the development of stable boron‐containing TADF emitters.  相似文献   

9.
A blue‐emitting iridium dendrimer, namely B‐G2 , has been successfully designed and synthesized with a second‐generation oligocarbazole as the dendron, which is covalently attached to the emissive tris[2‐(2,4‐difluorophenyl)‐pyridyl]iridium(III) core through a nonconjugated link to form an efficient self‐host system in one dendrimer. Unlike small molecular phosphors and other phosphorescent dendrimers, B‐G2 shows a continuous enhancement in the device efficiency with increasing doping concentration. When using neat B‐G2 as the emitting layer, the nondoped device is achieved without loss in efficiency, thus giving a state‐of‐art EQE as high as 15.3 % (31.3 cd A?1, 28.9 lm W?1) along with CIE coordinates of (0.16, 0.29).  相似文献   

10.
An adamantane‐based host material, namely, 4‐{3‐[4‐(9H‐carbazol‐9‐yl)phenyl]adamantan‐1‐yl}benzonitrile (CzCN‐Ad), was prepared by linking an electron‐donating carbazole unit and an electron‐accepting benzonitrile moiety through an adamantane bridge. In this approach, two functional groups were attached to tetrahedral points of adamantane to construct an “sp3” topological configuration. This design strategy endows the host material with a high triplet energy of 3.03 eV due to the disruption of intramolecular charge transfer. Although CzCN‐Ad has a low molecular weight, the rigid nonconjugated adamantane bridge results in a glass transition temperature of 89 °C. These features make CzCN‐Ad suitable for fabricating blue phosphorescent organic light‐emitting diodes (PhOLEDs). The devices based on sky‐blue phosphor bis[(4,6‐difluorophenyl)pyridinato‐N,C2′](picolinato)iridium(III) (FIrpic) achieved a high maximum external quantum efficiency (EQE) of 24.1 %, which is among the best results for blue PhOLEDs ever reported. Furthermore, blue PhOLEDs with bis(2,4‐difluorophenylpyridinato)‐tetrakis(1‐pyrazolyl)borate iridium(III) (FIr6) as dopant exhibited a maximum EQE of 14.2 % and a maximum luminance of 34 262 cd m?2. To the best of our knowledge, this is the highest luminance ever reported for FIr6‐based PhOLEDs.  相似文献   

11.
Donor–acceptor (D–A) molecular architecture has been shown to be an effective strategy for obtaining high‐performance electroluminescent materials. In this work, two D–A molecules, Ph‐BPA‐BPI and Py‐BPA‐BPI, have been synthesized by attaching highly fluorescent phenanthrene or pyrene groups to the C6‐ and C9‐positions of a locally excited‐state emitting phenylamine–phenanthroimidazole moiety. Equipped with good physical and hybridized local and charge‐transfer properties, both molecules show high performances as blue emitters in nondoped organic light‐emitting devices (OLEDs). An OLED using Ph‐BPA‐BPI as the emitting layer exhibits deep‐blue emission with CIE coordinates of (0.15, 0.08), and a maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 4.56 %, 3.60 cd A?1, and 3.66 lm W?1, respectively. On the other hand, a Py‐BPA‐BPI‐based, sky‐blue OLED delivers the best results among nondoped OLEDs with CIEy values of < 0.3 reported so far, for which a very low turn‐on voltage of 2.15 V, CIE coordinates of (0.17, 0.29), and maximum CE, PE, and EQE values of 10.9 cd A?1, 10.5 lm W?1, and 5.64 %, were achieved, respectively. More importantly, both devices show little or even no efficiency roll‐off and high singlet exciton‐utilizing efficiencies of 36.2 % for Ph‐BPA‐BPI and 39.2 % for Py‐BPA‐BPI.  相似文献   

12.
A new carbazole–fluorenyl hybrid compound, 3,3′(2,7‐di(naphthaline‐2‐yl)‐9H‐fluorene‐9,9‐diyl)bis(9‐phenyl‐9H‐carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue‐violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2‐phq)3 in NFBC, a highly efficient orange organic light‐emitting diode (OLED) with a maximum efficiency of 32 cd A?1 (26.5 Lm W?1) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll‐off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A?1 at a luminance of 1000 and 10 000 cd m?2, respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W?1 (21.9 cd A?1) was also obtained.  相似文献   

13.
We report effective solution‐processed chemical p‐type doping of graphene using trifluoromethanesulfonic acid (CF3SO3H, TFMS), that can provide essential requirements to approach an ideal flexible graphene anode for practical applications: i) high optical transmittance, ii) low sheet resistance (70 % decrease), iii) high work function (0.83 eV increase), iv) smooth surface, and iv) air‐stability at the same time. The TFMS‐doped graphene formed nearly ohmic contact with a conventional organic hole transporting layer, and a green phosphorescent organic light‐emitting diode with the TFMS‐doped graphene anode showed lower operating voltage, and higher device efficiencies (104.1 cd A?1, 80.7 lm W?1) than those with conventional ITO (84.8 cd A?1, 73.8 lm W?1).  相似文献   

14.
Multifunctional donor–acceptor compound 4,4′‐bis(dibenzothiophene‐S,S‐dioxide‐2‐yl)triphenylamine ( DSTPA ) was obtained by linking a strongly electron‐withdrawing core and a strongly electron‐donating core with a biphenyl bridge in linear spatial alignment. DSTPA not only has suitable HOMO and LUMO levels for easily accepting both holes and electrons, it was also demonstrated to have a high fluorescence quantum yield of 0.98 and a high triplet energy level of 2.39 eV. Versatile applications of DSTPA for bipolar transport, green fluorescent emission, and sensitizing a red phosphor were systematically investigated in a series of multi‐ and single‐layer organic light‐emitting devices. In traditional multilayer devices, it shows excellent performance both in an undoped fluorescent device (used as a green emitter and achieving maximum current and power efficiencies (CE and PE) of 12.6 cd A?1 and 9.4 Lm W?1, respectively) and in a red phosphorescent device (used as a host and achieving maximum CE and PE of 26.4 cd A?1 and 26.3 Lm W?1, respectively). Furthermore, DSTPA was also simultaneously used as an emitter, a hole transporter, and an electron transporter in a single‐layer device showing CE and PE of 5.1 cd A?1 and 4.7 Lm W?1, respectively. A single‐layer red phosphorescent device with efficiencies of 11.7 cd A?1 and 12.6 Lm W?1 was obtained by doping DSTPA with a red phosphor. The performances of all of the devices in this work are comparable to the best of their corresponding classes in the literature.  相似文献   

15.
A blue fluorescent polymer based on poly(vinyl carbazole) (PVK) and terfluorene, combined to make a chemical hybrid at the carbazole unit (PVK‐TF), is fully characterized in this study. PVK‐TF shows useful emission features, such as peaks at 400, 420, 437, 460, and 496 nm, depending on the processing conditions. It possesses a relatively high triplet energy level (2.23 eV), electrochemical stability, good film‐forming ability, and morphological stability. Based on this blue fluorescent material, highly efficient orange phosphorescent polymer light‐emitting diodes (PLEDs) were fabricated with a maximum efficiency of 21.99 cd A?1, and a maximum luminance of 19552.3 cd m?2. Single‐layer hybrid white PLEDs were developed, with a high color rendering index of 81.9 that emitted across the whole visible spectrum from 380 to 780 nm, corresponding to the Commission International de L'Eclairage coordinates x, y values of around (0.38, 0.40) and CCT = 3774, with a maximum current efficiency of 10.69 cd A?1, and a maximum brightness of 15723.3 cd m?2. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 587–595  相似文献   

16.
A thiophene‐phenylquinoline‐based homoleptic IrIII complex, [Ir(Th‐PQ)3], has been synthesised by a simple route and utilised as a dopant in solution‐processed phosphorescent organic light‐emitting diodes (PhOLEDs). It shows the current efficiency of approximately 26 cd A?1 and the external quantum efficiency of about 21 %, which are the highest values reported to date for PhOLEDs prepared by solution‐process.  相似文献   

17.
Aryl‐substituted phenanthroimidazoles (PIs) have attracted tremendous attention in the field of organic light‐emitting diodes (OLEDs), because they are simple to synthesize and have excellent thermal properties, high photoluminescence quantum yields (PLQYs), and bipolar properties. Herein, a novel blue–green emitting material, (E)‐2‐{4′‐[2‐(anthracen‐9‐yl)vinyl]‐[1,1′‐biphenyl]‐4‐yl}‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (APE‐PPI), containing a t‐APE [1‐(9‐anthryl)‐2‐phenylethene] core and a PI moiety was designed and synthesized. Owing to the PI skeleton, APE‐PPI possesses high thermal stability and a high PLQY, and the compound exhibits bipolar transporting characteristics, which were identified by single‐carrier devices. Nondoped blue–green OLEDs with APE‐PPI as the emitting layer show emission at λ=508 nm, a full width at half maximum of 82 nm, a maximum brightness of 9042 cd m?2, a maximum current efficiency of 2.14 cd A?1, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.55). Furthermore, a white OLED (WOLED) was fabricated by employing APE‐PPI as the blue–green emitting layer and 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7‐tetramethyljulolidin‐4‐yl‐vinyl)‐4H‐pyran (DCJTB) doped in tris‐(8‐hydroxyquinolinato)aluminum (Alq3) as the red–green emitting layer. This WOLED exhibited a maximum brightness of 10029 cd m?2, a maximum current efficiency of 16.05 cd A?1, CIE coordinates of (0.47, 0.47), and a color rendering index (CRI) of 85. The high performance of APE‐PPI‐based devices suggests that the t‐APE and PI combination can potentially be used to synthesize efficient electroluminescent materials for WOLEDs.  相似文献   

18.
Two phosphorescent dinuclear iridium(III) diastereomers (ΛΔ/ΔΛ) and (ΛΛ/ΔΔ) are readily separated by making use of their different solubilities in hot hexane. The bridging diarylhydrazide ligand plays an important role in the electrochemistry and photophysics of the complexes. Organic light‐emitting devices (OLEDs) that use these complexes as the green‐emissive dopants in solution‐processable single‐active‐layer architectures feature electroluminescence efficiencies that are remarkably high for dinuclear metal complexes, achieving maximum values of 37 cd A?1, 14 lm W?1, and 11 % external quantum efficiency.  相似文献   

19.
2,3,4,5‐Tetraarylsiloles are a class of important luminogenic materials with efficient solid‐state emission and excellent electron‐transport capacity. However, those exhibiting outstanding electroluminescence properties are still rare. In this work, bulky 9,9‐dimethylfluorenyl, 9,9‐diphenylfluorenyl, and 9,9′‐spirobifluorenyl substituents were introduced into the 2,5‐positions of silole rings. The resulting 2,5‐difluorenyl‐substituted siloles are thermally stable and have low‐lying LUMO energy levels. Crystallographic analysis revealed that intramolecular π–π interactions are prone to form between 9,9′‐spirobifluorene units and phenyl rings at the 3,4‐positions of the silole ring. In the solution state, these new siloles show weak blue and green emission bands, arising from the fluorenyl groups and silole rings with a certain extension of π conjugation, respectively. With increasing substituent volume, intramolecular rotation is decreased, and thus the emissions of the present siloles gradually improved and they showed higher fluorescence quantum yields (ΦF=2.5–5.4 %) than 2,3,4,5‐tetraphenylsiloles. They are highly emissive in solid films, with dominant green to yellow emissions and good solid‐state ΦF values (75–88 %). Efficient organic light‐emitting diodes were fabricated by adopting them as host emitters and gave high luminance, current efficiency, and power efficiency of up to 44 100 cd m?2, 18.3 cd A?1, and 15.7 lm W?1, respectively. Notably, a maximum external quantum efficiency of 5.5 % was achieved in an optimized device.  相似文献   

20.
Blue light‐emitting polyfluorenes, PPF‐FSOs and PPF‐SOFs were synthesized via introducing spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers (2,7‐diyl and 2′,7′‐diyl) (FSO/SOF) into the poly[9,9‐bis(4‐(2‐ethylhexyloxy) phenyl)fluorene‐2,7‐diyl] (PPF) backbone, respectively. With the increasing contents of FSO and SOF moieties, the absorption and PL spectra of PPF‐FSOs show slight red shift, while that of PPF‐SOFs exhibit blue shift, respectively. The HOMO and LUMO levels reduce gradually with increasing SOF unit in PPF‐SOFs. The polymers emit blue light peaked around 430–445 nm and show an excellent spectral stability with the variation in current densities. The distinctly narrowing EL spectra were observed with the incorporation of isomers in the polymers. The full width at half maximum reduced by 15 nm for PPF‐SOFs, resulting in a blue shift with the CIE coordinates from (0.16, 0.11) to (0.16, 0.08). With a device configuration of ITO/PEDOT:PSS/EML/CsF/Al, a maximum luminance efficiency (LEmax) of 2.00 cd A?1, a maximum external quantum efficiency (EQEmax) of 3.76% with the CIE coordinates of (0.16, 0.08) for PPF‐SOF15 and a LEmax of 1.68 cd A?1, a EQEmax of 2.38% with CIE (0.16, 0.12) for PPF‐FSO10 were obtained, respectively. The result reveals that spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers are promising blocks for deep‐blue light‐emitting polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2332–2341  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号