首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5,10, 15-Triphenyl-20-{2- [α- (adenine-9 ) acetylamino]} phenyl porphyrin ( 1 ), 5,10, 15-triphenyl-20-{2-[α-(cytosine-1)acetylamino]} phenyl porphyrin (2), 5, 10, 15-triphenyl-20-{4-[α-(cytosine-1)ethoxy]} phenyl porphyrin (3) and their zinc complexes Zn-1, Zn-2 and Zn-3 have been prepared and characterized by ^1H NMR spectra, elemental analyses, electronic absorption spectra and mass spectra (FAB). Intramolecular π-π interactions and intramolecular metal-~ interaction for 1, 2, Zn-1,and Zn-2 have been investigated by several methods. ^1H NMR studies demonstrate that the porphyrin π-system in 1 and 2 is parallel to the adenine and the cytosine aromatic ring, respectively. The electronic absorption spectral properties of free porphyrin derivatives and their zinc complexes have been compared with those of H2TPP and ZnTPP. The results show that the UV-vis spectra of 1 and 2 are the same as that of H2TPP,whereas the spectra of their zinc complexes show 7 nm red shifts of the Soret bands compared to that of ZnTPP. The emission spectra of Zn-1 and Zn-2 are independent of excitation wavelength. From combination of the evidence of absorption and emission spectra it is suggested the existence of intramolecular metal-π interaction in Zn-1 and Zn-2. The results of conformational analysis agreed quite nicely with that of experiments, thus it was further to validate the experimental conclusions.  相似文献   

2.
Several anion‐π complexes of isocyanuric acid, thioderivatives and their halogen substituted derivatives with chloride anion have been studied. The geometric and energetic features, charges transfer from chloride anion to the aromatic rings and “atoms‐in‐molecules” analysis are performed and discussed for these complexes. The results show that the strength of the anion‐π interaction between cyanuric derivatives and chloride anion can be tuned by halogen‐substituting. The localized molecular orbital energy decomposition analyses shows that, in the total interaction, exchange and electrostatic energies are the dominant stabilizing forces, and the polarization energies also make a favorable contribution. Finally, solvent effect significantly weakens the anion‐π interaction between the isocyanuric derivatives and chloride anion, especially in polar solvents. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Anion‐π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion–π interactions suggests that they serve best in stabilizing long‐distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation‐π biocatalysis, reported here is the anion‐π‐catalyzed epoxide‐opening ether cyclizations of oligomers. Only on π‐acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto/kcat >104 m ?1). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks‐type substrate concentration dependence, entropy‐centered substrate destabilization) and opens intriguing perspectives for future developments.  相似文献   

4.
Tryptophan is an essential amino acid, and understanding the conformational preferences of monomer and dimer is a subject of outstanding relevance in biological systems. An exhaustive first principles investigation of tryptophan ( W ) and its ionized counterparts cations (WC) , anions (WA) , and zwitterions (WZ) has been carried out. A comprehensive and systematic study of tryptophan dimer (WD) conformations resulted in about 62 distinct minima on the potential energy surface. The hydrogen bonds and a variety of noncovalent interactions such as OH‐π, NH‐π, CH‐π, CH‐O, and π‐π interactions stabilized different forms of tryptophan and its dimers. Over all in monomeric conformers which have NH‐O, hydrogen bonds showed higher stability than other conformers. A cursory analysis reveal that the most stable dimers stabilized by hydrogen bonding interactions while the less stable dimers showed aromatic side chain interactions. Protein Data Bank analysis of tryptophan dimers reveals that at a larger distance greater than 5 Å, T‐shaped orientations (CH‐π interactions) are more prevalent, while stacked orientations (π‐π interactions) are predominant at a smaller distance. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
6.
Herein, we report an efficient one‐pot condensation of maleimide derivatives in the presence of acetic acid and water to afford a series of benzene triimides (BTIs). The structure, physicochemical properties and electrochemistry behavior of BTIs were studied by means of X‐ray crystallography, UV‐Vis spectra, cyclic voltammetry and differential pulse voltammetry. Owing to the planar structure and unique electron‐deficient nature, BTIs can self‐assemble into different motifs including nanorod, nanotube, nanobrick and cross‐linked structure depending on different N‐substituents. The origin for different self‐assemblies was ascribed to the intermolecular lone pair‐π interaction or a balance of lone pair‐π and π‐π stacking.  相似文献   

7.
The nature and strength of the cation-π interactions between NH4^+ and toluene, p-cresol, or Me-indole were studied in terms of the topological properties of molecular charge density and binding energy decomposition. The results display that the diversity in the distribution pattern of bond and cage critical points reflects the profound influence of the number and nature of substituent on the electron density of the aromatic rings. On the other hand, the energy decomposition shows that dispersion and repulsive exchange forces play an important role in the organic cation (NH4^+)-π interaction, although the electrostatic and induction forces dominate the interaction. In addition, it is intriguing that there is an excellent correlation between the electrostatic energy and ellipticity at the bond critical point of the aromatic π systems, which would be helpful to further understand the electrostatic interaction in the cation-π complexes.  相似文献   

8.
Two new complexes [Cu(dafo)2(en)](ClO4)2·2H2O (en=NH2CH2CH2NH2) 1 and [Cu(dafo)2(dap)](ClO4)2·2H2O [dap=NH2CH2CH(CH3)NH2] 2 (dafo=4,5-diazafluoren-9-one) have been synthesized and characterized by elemental analysis, IR and UV spectra. Meanwhile, the complex 1 has been characterized by single crystal X-ray diffraction analysis. The initial DNA binding interactions of the complexes 1 and 2 have been investigated by UV spectra, emission spectra and cyclic voltammogram. Concluding the results of three methods used to measure the interaction of complexes 1 and 2 with DNA, the action mode of the two complexes with DNA is intercalation, and character of ligands and steric effect may affect the interaction of the complexes with DNA.  相似文献   

9.
Asymmetric catalysis with transition‐metal complexes is the basis for a vast array of stereoselective transformations and has changed the face of modern synthetic chemistry. Key to this success has been the design of chiral ligands to control the regio‐, diastereo‐, and enantioselectivity. Phosphoramidites have emerged as a highly versatile and readily accessible class of chiral ligands. Their modular structure enables the formation of ligand libraries and easy fine‐tuning for a specific catalytic reaction. Phosphoramidites frequently show exceptional levels of stereocontrol, and their monodentate nature is essential in combinatorial catalysis, where a ligand‐mixture approach is used. In this Review, recent developments in asymmetric catalysis with phosphoramidites used as ligands are discussed, with a focus on the formation of carbon–carbon and carbon–heteroatom bonds.  相似文献   

10.
Molecular recognition events in biological systems are driven by non‐covalent interactions between interacting species. Here, we have studied hydrogen bonds of the CH???Y type involving electron‐deficient CH donors using dispersion‐corrected density functional theory (DFT) calculations applied to acetylcholinesterase–ligand complexes. The strengths of CH???Y interactions activated by a proximal cation were considerably strong; comparable to or greater than those of classical hydrogen bonds. Significant differences in the energetic components compared to classical hydrogen bonds and non‐activated CH???Y interactions were observed. Comparison between DFT and molecular mechanics calculations showed that common force fields could not reproduce the interaction energy values of the studied hydrogen bonds. The presented results highlight the importance of considering CH???Y interactions when analysing protein–ligand complexes, call for a review of current force fields, and opens up possibilities for the development of improved design tools for drug discovery.  相似文献   

11.
For CeO2 or M‐doped CeO2 catalysts, reliable energetics associated with surface reactivity requires accurate representation of oxidized and reduced metal states. Density functional theory (DFT) is used extensively for metals and metal oxides; however, for strongly correlated electron materials, conventional DFT fails to predict both qualitative and quantitative properties. This is the result of a localized electron self‐interaction error that is inherit to DFT. DFT+U has shown promise in correcting energetic errors due to the self‐interaction error, however, its transferability across processes relevant to surface catalysis remains unclear. Hybrid functionals, such as HSE06, can also be used to correct this self‐interaction error. These hybrid functionals are computationally intensive, and especially demanding for periodic surface slab models. This perspective details the challenges in representing the energetics of M‐doped ceria catalyzed processes and examines using DFT extensions to model the localized electronic properties. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
《中国化学会会志》2018,65(8):908-917
We study the structural and energetic properties of binary ionic porphyrin molecular complexes [H4TPPS4]2−∙∙∙SnTP using quantum chemical techniques. As the axial ligands and the protonation of pyridine sites highly influence the structure and coordination of metal‐containing porphyrin, various structures of SnTP in the presence and absence of axial ligands and pyridine protons were considered. The constructed porphyrins were then made to interact face to face, and the formed complexes were optimized at the HF/STO‐3G level of theory. The stability and stack‐like interaction of the complexes were analyzed through interplanar spacing, planar angle, and edge‐to‐edge distance. The structural parameters emphasize the importance of axial ligands for the formation of stack‐like structures. The complex that contains axial ligands with pyridine protons, namely [H4TPPS4]2−∙∙∙[X'SnXTPH]4+, shows a perfectly stacked layer with a reasonable interplanar distance, which is confirmed from the calculated counterpoise interaction and deformation energies. The energetic parameters were found to correlate well with the obtained geometries. The molecular electrostatic potential (MEP) maps were obtained to infer the presence of nonbonded interaction between the binary ionic porphyrins.  相似文献   

13.
用紫外差光谱、红外光谱法和荧光猝灭法研究了典型多环芳烃蒽与苯甲酸及其羟基取代衍生物邻羟基苯甲酸和对羟基苯甲酸之间的作用机理。实验结果表明,在此芳香羧酸与蒽之间存在定向的、特异性的作用,其作用方式受到反应物结构和环境酸度的影响。对苯甲酸和邻羟基苯甲酸而言,当pH<pKa时,二者之间以蒽离域大π电子与羧基质子之间的π-H氢键作用为主,pH>pKa时,π-π电子给体受体作用逐渐成为主要结合方式。邻位羟基的存在使得苯甲酸与蒽的作用强度明显降低。对羟基苯甲酸特殊的D-π-A型分子结构使得它在溶液中形成平面多分子聚集体,这种多分子聚集体的生成使得对羟基苯甲酸与蒽的结合方式不随酸度变化,在pH2.0~10.0的范围内均以π-π电子给体受体作用相结合,且结合强度大于苯甲酸和邻羟基苯甲酸。  相似文献   

14.
A novel route for the synthesis of Cu(II)‐triazolophthalazine complexes using the Cu(II)‐promoted cyclization dehydrogenation reactions of hydrazonophthalazines under reflux was presented. Two hydrazonophthalazines were cyclized to the corresponding triazolophthalazine ligands, 3‐pyridin‐2‐yl‐3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazine ( TPP ) and 3‐(3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazin‐3‐yl)‐benzoic acid ( TP3COOH ), followed by in situ complexation with Cu(II) yielding six novel Cu(II)‐triazolophthalazine complexes depending on the reaction conditions. The molecular and supramolecular structures of the Cu(II)‐triazolophthalazine complexes were discussed. The metal sites have rectangular pyramidal geometry in the [Cu(TPP)Cl2]2; 1 and [Cu(TP3COOEt)Cl2(H2O)]2; 4 dinuclear complexes, distorted square planar in [Cu(TP3COOMe)2Cl2]; 3 , [Cu(TP3COOH)2Cl2]; 5 and [Cu(TP3COOH)2Cl2]·H2O; 6 and a distorted octahedral in [Cu(TPP)(H2O)2(NO3)2]; 2 . Hirshfeld analysis showed that the O…H, C…H, Cl…H (except TP3COOH and 2 ), N…H and π‐π stacking interactions are the most important intermolecular contacts. The π‐π stacking interactions are the maximum for TP3COOH and complex 6 with net C…C/C…N contacts of 19.4% and 15.4%, respectively. The orbital–orbital interaction energies of the Cu‐N/Cu‐Cl bonds correlated inversely with the corresponding Cu‐N/Cu‐Cl distances, respectively. The charge transfer processes between Cu(II) and ligand groups were also discussed. The charge densities of the Cu(II) centers are reduced to 0.663–0.995 e due to the interactions with the ligand groups coordinating it.  相似文献   

15.
Two functionalized calix[4]arenes in cone conformation L2–3 have been synthesized and their intramolecular inclusion complexes (1:1) with organic neutral molecules CH3CN and CH3NO2 have been prepared and characterized, respectively. The X‐ray crystallographic analysis shows that L2 in L2·CH3CN. C2H5OH has C4 symmestry and L3 in L3.CH3NO2 exhibits C2 symmestry. The CH‐π aromatic interactions between the CH group of the guest and the phenyl rings of the calix backbond have been proved to be able to stabilize the intramolecular inclusion complexes formed. The interaction is directional, but it is independent of the acidity of the guest. To gain information on CH‐s interactions, suitable geometrical parameters have been calculated from the crystal data of intramolecular inclusion complexes. The results show that L3.CH3NO2 with L3 in C2 symmestry can also be bound stably in the intramolecular inclusion complex, being consistent with the thermal analysis. The geometrical parameters and the results of the thermal analysis of L1.CH3CN and L1.CH3NO2 were also given and discussed.  相似文献   

16.
合成了两个新的配合物CuLCl2•2EtOH(1) 和CoLCl2 (2) [L是( S , S )-1,2-二N-甲基苯并咪唑-1,2-二甲氧基-乙烷],并通过单晶X衍射确定它们的结构。配合物1中,L作为三齿[N, N, O]配体,而配合物2 中,L作为二齿[N, N]配体。这两个配合物共同的结构特点都是通过分子内氢键形成2维的格子结构,然后通过分子间的C-H···Cl型氢键和π–π堆积作用形成3维结构。  相似文献   

17.
The possibility of forming stable BeR2:ArH:Y? (R=H, F, Cl; ArH=naphthalene, pyrene; Y=Cl, Br) ternary complexes in which the beryllium compounds and anions are located on the opposite sides of an extended aromatic system is explored by means of MP2/aug‐cc‐pVDZ ab initio calculations. Comparison of the electron‐density distribution of these ternary complexes with the corresponding BeR2:ArH and ArH:Y? binary complexes reveals the existence of significant cooperativity between the two noncovalent interactions in the triads. The energetic effects of this cooperativity are quantified by evaluation of the three‐body interaction energy Δ3E in the framework of the many‐body interaction‐energy (MBIE) approach. Although an essential component of the interaction energies is electrostatic and is well reflected in the changes in the molecular electrostatic potential of the aromatic system on complexation, strong polarization effects, in particular for the BeR2:ArH interactions, also play a significant role. The charge transfers associated with these polarization effects are responsible for significant distortion of both the BeR2 and the aromatic moieties. The former are systematically bent in all the complexes, and the latter are curved to a degree that depends on the nature of the R substituents of the BeR2 subunit.  相似文献   

18.
采用水热法设计合成了两个新型三维超分子化合物H2L·H2O (1)和[Ag(bpy)2]·HL·H2O (2) (其中bpy=2,2'-联吡啶, H2L=2,4′-二羧基二苯甲酮),晶体结构分析表明,它们均是通过氢键采用不同的连接方式拓展而成。其中,化合物1 是2,4′-二羧基二苯甲酮和水分子通过O–H···O氢键形成的一维梯状链扩展构筑的三维超分子体系;化合物2 则是2,4′-二羧基二苯甲酮和水分子通过两种氢键形成含有一维隧道的三维超分子体系。有趣的是,[Ag(bpy)2]+ 阳离子通过π–π 堆积和弱的Ag···Ag相互作用连在一起,进而以客体形式填充其中。荧光性质研究表明,由于存在bpy的螯合与堆积效应,化合物2相比配体和化合物1,其荧光发射峰发生红移。  相似文献   

19.
The Friedländer condensation of 3-aminothieno[2,3-b]pyrazine-2-carboxaldehyde with either methyl ketones or carbocyclic and heterocyclic ketones leads to a family of new bidentate ligands containing a pyridothienopyrazine coordinating unit. Complexation with [Ru(bpy)2Cl2] affords the corresponding six-coordinated Ru(II) complexes. The structures were analyzed by 1H NMR spectroscopy, which shows shielding effects reflecting significant interligand π-stacking interaction in the complexes. The photophysical properties of the ligands and their metallic complexes have been also examined.  相似文献   

20.
Pervanadyl (VO2+) complexes with N‐(aroyl)‐N′‐(picolinylidene)hydrazines (HL = Hpabh, Hpath and Hpadh; H stands for the dissociable amide hydrogen) are described. The Schiff bases were obtained by condensation of 2‐pyridine‐carboxaldehyde with benzhydrazide (Hpabh), 4‐methylbenzhydrazide (Hpath) and 4‐dimethylaminobenzhydrazide (Hpadh), respectively. The reaction of [VO(acac)2] and HL in acetonitrile in air affords the complexes of general formula [VO2L]. The diamagnetic nature and EPR silence confirm the +5 oxidation state of vanadium in these complexes. Infrared spectra of the complexes are consistent with the enolate form of the coordinated ligands. Electronic spectra show charge transfer bands in the range 486–233 nm. The complexes are redox active and display an irreversible reduction (–0.64 to –0.72 V vs. Ag/AgCl). The crystal structures of all the complexes have been determined. In each complex, the metal centre is in a distorted trigonal‐bipyramidal N2O3 coordination sphere formed by the pyridine‐N, the imine‐N and the deprotonated amide‐O donor L and two oxo groups. The planar ligand satisfies one equatorial and two axial positions. The other two equatorial positions are occupied by the two oxo groups. In the solid state, the molecules of each of the three complexes form a chain‐like arrangement via the azomethine‐H…oxo interactions. Interchain weak π‐π interactions lead to two dimensional networks for [VO2(pabh)] and [VO2(path)]. On the other hand, [VO2(padh)] forms a two‐dimensional network through interchain N‐methyl‐H…oxo interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号