首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to the intrinsic limitations of the conventional bioconjugation methods involving native nucleophilic functions of proteins, we sought to develop alternative approaches to introduce metallocarbonyl infrared labels onto proteins on the basis of the [3 + 2] dipolar azide‐alkyne cycloaddition (AAC). To this end, two cyclopentadienyl iron dicarbonyl (Fp) complexes carrying a terminal or a strained alkyne handle were synthesized. Their reactivity was examined towards a model protein and poly (amidoamine) (PAMAM) dendrimer, both carrying azido groups. While the copper (I)‐catalysed azide‐alkyne cycloaddition (CuAAC) proceeded smoothly with the terminal alkyne metallocarbonyl derivative, labelling by strain‐promoted azide‐alkyne cycloaddition (SPAAC) was less successful in terms of final coupling ratios. Infrared spectral characterization of the bioconjugates showed the presence of two bands in the 2000 cm?1 region, owing to the stretching vibration modes of the carbonyl ligands of the Fp entities.  相似文献   

2.
A combination of experiment and theory has been used to explore the mechanisms by which molecular iodine (I2) and iodonium ions (I+) activate alkynes towards iodocyclization. Also included in the analysis are the roles of atomic iodine (I . ) and iodide ion (I?) in mediating the competing addition of I2 to the alkyne. These studies show that I2 forms a bridged I2–alkyne complex, in which both alkyne carbons are activated towards nucleophilic attack, even for quite polarized alkynes. By contrast, I+ gives unsymmetrical, open iodovinyl cations, in which only one carbon is activated toward nucleophilic attack, especially for polarized alkynes. Addition of I2 to alkynes competes with iodocyclization, but is reversible. This fact, together with the capacity of I2 to activate both alkyne carbons towards nucleophilic attack, makes I2 the reagent of choice (superior to iodonium reagents) for iodocyclizations of resistant substrates. The differences in the nature of the activated intermediate formed with I2 versus I+ can also be exploited to accomplish reagent‐controlled 5‐exo/6‐endo‐divergent iodocyclizations.  相似文献   

3.
Chitosan ( 1 ) was prepared by basic hydrolysis of chitin of an average molecular weight of 70000 Da, 1H‐NMR spectra indicating almost complete deacetylation. N‐Phthaloylation of 1 yielded the known N‐phthaloylchitosan ( 2 ), which was tritylated to provide 3a and methoxytritylated to 3b . Dephthaloylation of 3a with NH2NH2?H2O gave the 6‐O‐tritylated chitosan 4a . Similarly, 3b gave the 6‐O‐methoxytritylated 4b . CuSO4‐Catalyzed diazo transfer to 4a yielded 95% of the azide 5a , and uncatalyzed diazo transfer to 4b gave 82% of azide 5b . Further treatment of 5a with CuSO4 produced 2‐azido‐2‐deoxycellulose ( 7 ). Demethoxytritylation of 5b in HCOOH gave 2‐azido‐2‐deoxy‐3,6‐di‐O‐formylcellulose ( 6 ), which was deformylated to 7 . The 1,3‐dipolar cycloaddition of 7 to a range of phenyl‐, (phenyl)alkyl‐, and alkyl‐monosubstituted alkynes in DMSO in the presence of CuI gave the 1,2,3‐triazoles 8 – 15 in high yields.  相似文献   

4.
Peptidyl–RNA conjugates have various applications in studying the ribosome and enzymes participating in tRNA‐dependent pathways such as Fem transferases in peptidoglycan synthesis. Herein a convergent synthesis of peptidyl–RNAs based on Huisgen–Sharpless cycloaddition for the final ligation step is developed. Azides and alkynes are introduced into tRNA and UDP‐MurNAc‐pentapeptide, respectively. Synthesis of 2′‐azido RNA helix starts from 2′‐azido‐2′‐deoxyadenosine that is coupled to deoxycytidine by phosphoramidite chemistry. The resulting dinucleotide is deprotected and ligated to a 22‐nt RNA helix mimicking the acceptor arm of Ala‐tRNAAla by T4 RNA ligase. For alkyne UDP‐MurNAc‐pentapeptide, meso‐cystine is enzymatically incorporated into the peptidoglycan precursor and reduced, and L ‐Cys is converted to dehydroalanine with O‐(mesitylenesulfonyl)hydroxylamine. Reaction of but‐3‐yne‐1‐thiol with dehydroalanine affords the alkyne‐containing UDP‐MurNAc‐pentapeptide. The CuI‐catalyzed azide alkyne cycloaddition reaction in the presence of tris[(1‐hydroxypropyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]amine provided the peptidyl‐RNA conjugate, which was tested as an inhibitor of non‐ribosomal FemXWv aminoacyl transferase. The bi‐substrate analogue was found to inhibit FemXWv with an IC50 of (89±9) pM , as both moieties of the peptidyl–RNA conjugate contribute to high‐affinity binding.  相似文献   

5.
Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m ?1 s?1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox.  相似文献   

6.
Well‐defined copper(I) complexes of composition [Tpm*,BrCu(NCMe)]BF4 (Tpm*,Br=tris(3,5‐dimethyl‐4‐bromo‐pyrazolyl)methane) or [Tpa*Cu]PF6 (Tpa*=tris(3,5‐dimethyl‐pyrazolylmethyl)amine) catalyze the formation of 2,5‐disubstituted oxazoles from carbonyl azides and terminal alkynes in a direct manner. This process represents a novel procedure for the synthesis of this valuable heterocycle from readily available starting materials, leading exclusively to the 2,5‐isomer, attesting to a completely regioselective transformation. Experimental evidence and computational studies have allowed the proposal of a reaction mechanism based on the initial formation of a copper–acyl nitrene species, in contrast to the well‐known mechanism for the copper‐catalyzed alkyne and azide cycloaddition reactions (CuAAC) that is triggered by the formation of a copper–acetylide complex.  相似文献   

7.
The copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4‐disubstituted‐1,2,3‐triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring‐formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π‐backbonding with copper(I), azides with ancillary copper‐binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne‐involved CuAAC reactions are also included, based on the relatively limited data that are available at this point.  相似文献   

8.
Dinuclear alkynylcopper(I) ladderane complexes are prepared by a robust and simple protocol involving the reduction of Cu2(OH)3OAc or Cu(OAc)2 by easily oxidised alcohols in the presence of terminal alkynes; they function as efficient catalysts in copper‐catalysed alkyne–azide cycloaddition reactions as predicted by the Ahlquist–Fokin calculations. The same copper(I) catalysts are formed during reactions by using the Sharpless–Fokin protocol. The experimental results also provide evidence that sodium ascorbate functions as a base to deprotonate terminal alkynes and additionally give a convincing alternative explanation for the fact that the CuI‐catalysed reactions of certain 1,3‐diazides with phenylacetylene give bis(triazoles) as the major products. The same dinuclear alkynylcopper(I) complexes also function as catalysts in cycloaddition reactions of azides with 1‐iodoalkynes.  相似文献   

9.
N? C bonded (non‐bridged) 5‐(1,2,3‐triazol‐1‐yl)tetrazoles were synthesized by the CuI‐catalyzed 1,3‐dipolar azide–alkyne cycloaddition click reaction using 5‐azido‐N‐(propan‐2‐ylidene)‐1H‐tetrazole ( 1 ). For example, the click reaction of 1 in the presence of CuSO4?5 H2O and Na ascorbate at 65–70 °C for 48 h in CH3CN/H2O co‐solvent was found to be limited to only terminal alkynes that have electron‐withdrawing groups, CF3C?CH ( 2 a ) and SF5C?CH ( 2 b ), giving rise to isopropylidene‐[5‐(4‐trifluoromethyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 a ) and isopropylidene‐[5‐(4‐pentafluorosulfanyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 b ) in 47 % and 66 % yields, respectively. When carried out under conditions using CuI and 2,6‐lutidine as catalysts at 0 °C for 13 h in CHCl3, the click reaction was versatile toward alkynes even those having electron‐donating groups. Properties of new products were determined and compared with those of 1 . Heats of formation, detonation pressures, detonation velocities and impact sensitivities are reported for these new 5‐(1,2,3‐triazol‐1‐yl)tetrazoles.  相似文献   

10.
Oligonucleotides containing the 5‐substituted 2′‐deoxyuridines 1b or 1d bearing side chains with terminal C?C bonds are described, and their duplex stability is compared with oligonucleotides containing the 5‐alkynyl compounds 1a or 1c with only one nonterminal C?C bond in the side chain. For this, 5‐iodo‐2′‐deoxyuridine ( 3 ) and diynes or alkynes were employed as starting materials in the Sonogashira cross‐coupling reaction (Scheme 1). Phosphoramidites 2b – d were prepared (Scheme 3) and used as building blocks in solid‐phase synthesis. Tm Measurements demonstrated that DNA duplexes containing the octa‐1,7‐diynyl side chain or a diprop‐2‐ynyl ether residue, i.e., containing 1b or 1d , are more stable than those containing only one triple bond, i.e., 1a or 1c (Table 3). The diyne‐modified nucleosides were employed in further functionalization reactions by using the protocol of the CuI‐catalyzed Huisgen–Meldal–Sharpless [2+3] cycloaddition (‘click chemistry’) (Scheme 2). An aliphatic azide, i. e., 3′‐azido‐3′‐deoxythymidine (AZT; 4 ), as well as the aromatic azido compound 5 were linked to the terminal alkyne group resulting in 1H‐1,2,3‐triazole‐modified derivatives 6 and 7 , respectively (Scheme 2), of which 6 forms a stable duplex DNA (Table 3). The Husigen–Meldal–Sharpless cycloaddition was also performed with oligonucleotides (Schemes 4 and 5).  相似文献   

11.
The glycoconjugation of biologically privileged 1,3,4‐oxadiazole scaffold is described via Cu(I)‐catalyzed azide–alkyne cycloaddition. A series of glycosyl alkynes 1b – i , obtained from various commercial sugars, were treated with azide functionalized 1,3,4‐oxadiazole using click chemistry to access triazole‐linked glycosylated 1,3,4‐oxadiazoles 10b – i in good yields. The structure of the developed glycoconjugates has been ascertained by extensive spectroscopic analysis (1H &13C NMR, IR, and MS).  相似文献   

12.
A unique two‐step modular system for site‐specific antibody modification and conjugation is reported. The first step of this approach uses enzymatic bioconjugation with the transpeptidase Sortase A for incorporation of strained cyclooctyne functional groups. The second step of this modular approach involves the azide–alkyne cycloaddition click reaction. The versatility of the two‐step approach has been exemplified by the selective incorporation of fluorescent dyes and a positron‐emitting copper‐64 radiotracer for fluorescence and positron‐emission tomography imaging of activated platelets, platelet aggregates, and thrombi, respectively. This flexible and versatile approach could be readily adapted to incorporate a large array of tailor‐made functional groups using reliable click chemistry whilst preserving the activity of the antibody or other sensitive biological macromolecules.  相似文献   

13.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(CC) interactions, Pt Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

14.
We report an efficient and scalable synthesis of azidotrifluoromethane (CF3N3) and longer perfluorocarbon‐chain analogues (RFN3; RF=C2F5, n C3F7, n C8F17), which enables the direct insertion of CF3 and perfluoroalkyl groups into triazole ring systems. The azidoperfluoroalkanes show good reactivity with terminal alkynes in copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC), giving access to rare and stable N ‐perfluoroalkyl triazoles. Azidoperfluoroalkanes are thermally stable and the efficiency of their preparation should be attractive for discovery programs.  相似文献   

15.
The strain-promoted alkyne-azide cycloaddition (SPAAC) is the most commonly employed bioorthogonal reaction with applications in a broad range of fields. Over the years, several different cyclooctyne derivatives have been developed and investigated in regard to their reactivity in SPAAC reactions with azides. However, only a few studies examined the influence of structurally diverse azides on reaction kinetics. Herein, we report our investigations of the reactivity of primary, secondary, and tertiary azides with the cyclooctynes BCN and ADIBO applying experimental and computational methods. All azides show similar reaction rates with the sterically non-demanding cyclooctyne BCN. However, due to the increased steric demand of the dibenzocyclooctyne ADIBO, the reactivity of tertiary azides drops by several orders of magnitude in comparison to primary and secondary azides. We show that this chemoselective behavior of tertiary azides can be exploited to achieve semiorthogonal dual-labeling without the need for any catalyst using SPAAC exclusively.  相似文献   

16.
Acyl substituted triazoles are valuable scaffolds, but the direct synthesis of these moieties from terminal alkynes by copper catalysis remains unexplored. We report a robust, general, and efficient method using a simple CuI/2,2′‐bipyridine catalytic system. This transformation involves a copper catalyzed azide‐alkyne cycloaddition (CuAAC) followed by an intramolecular acylation onto a carbamoyl chloride. The reaction proceeds under mild conditions, tolerates several functional groups, and is readily scalable. This method represents a novel strategy towards the synthesis of complex heterocycles by a CuAAC/acylation domino process.  相似文献   

17.
The design of multivalent glycoclusters requires the conjugation of biologically relevant carbohydrate epitopes functionalized with linker arms to multivalent core scaffolds. The multigram‐scale syntheses of three structurally modified triethyleneglycol analogues that incorporate amide moiety(ies) and/or a phenyl ring offer convenient access to a series of carbohydrate probes with different water solubilities and rigidities. Evaluation of flexibility and determination of preferred conformations were performed by conformational analysis. Conjugation of the azido‐functionalized carbohydrates with tetra‐propargylated core scaffolds afforded a library of 18 tetravalent glycoclusters, in high yields, by CuI‐catalyzed azide–alkyne cycloaddition (CuAAC). The compounds were evaluated for their ability to bind to PA‐IL (the LecA lectin from the opportunistic pathogen Pseudomonas aeruginosa). Biochemical evaluation through inhibition of hemagglutination assays (HIA), enzyme‐linked lectin assays (ELLA), surface plasmon resonance (SPR), and isothermal titration microcalorimetry (ITC) revealed improved and unprecedented affinities for one of the monovalent probes (Kd=5.8 μM ) and also for a number of the tetravalent compounds that provide several new nanomolar ligands for this tetrameric lectin.  相似文献   

18.
An easily prepared supported copper hydroxide on titanium oxide (Cu(OH)x/TiO2) showed high catalytic performance for the 1,3‐dipolar cycloaddition of organic azides to terminal alkynes in non‐polar solvents under anaerobic conditions. The reactions of various combinations of organic azides (four examples, including aromatic and aliphatic ones) and terminal alkynes (eleven examples, including aromatic, aliphatic, and double bond‐containing ones) exclusively proceeded to give the corresponding 1,4‐disubstituted‐1,2,3‐triazole derivatives in a completely regioselective manner. For the transformation of benzyl azide and ethynylbenzene with 0.12 mol % of Cu(OH)x/TiO2, the turnover frequency was 505 h?1 and the turnover number reached up to 800. These values were the highest among those with previously reported heterogeneous catalysts including Cu(OH)x/Al2O3. The observed catalysis was truly heterogeneous and the retrieved catalyst after the reaction could be reused at least three times with retention of its high catalytic performance. It was confirmed by the UV/Vis spectrum of Cu(OH)x/TiO2 and the amount of diyne formed that the CuII species in Cu(OH)x/TiO2 were reduced to CuI species by the alkyne–alkyne homocoupling at the initial stage of the reaction (during the pretreatment of Cu(OH)x/TiO2 with an alkyne). The catalytic reaction rate for the 1,3‐dipolar cycloaddition linearly increased with an increase in the amount of in situ generated CuI species. Therefore, the in situ generated CuI species would be the catalytically active species for the present 1,3‐dipolar cycloaddition.  相似文献   

19.
This contribution presents the synthesis of helical alkyne‐terminated polymers using a functionalized Nickel complex to initiate the polymerization of menthylphenyl isocyanides. The resulting polymers display low dispersities and controlled molecular weights. Copper‐catalyzed azide/alkyne cycloadditions (CuAAC) are performed to attach various azide‐containing compounds to the polymer termini. After azido‐phosphonate moiety attachment the polymer displays a signal at 25.4 ppm in the 31P NMR spectrum demonstrating successful end‐group functionalization. End‐group functionalization of a fluorescent dye allows to determine the functionalization yield as 89% (±8). Successful ligation of an azide‐functionalized peptide sequence (MKLA = 1547 g/mol) increases the Mn from 5100 for the parent polymer to 6700 for the bioconjugate as visualized by GPC chromatography. Analysis by CD spectroscopy confirms that the helical conformation of the poly(isocyanide) block in the peptide–polymer conjugate is maintained after postpolymerization modification. These results demonstrate an easy, generalizable, and versatile strategy toward mono‐telechelic helical polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2766–2773  相似文献   

20.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号