首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organometallic ruthenium–arene compounds bearing a maltol ligand have been shown to be nearly inactive in in vitro anticancer assays, presumably due to the formation of dimeric RuII species in aqueous solutions. In an attempt to stabilize such complexes, [Ru(η6p‐cymene)(XY)Cl] (XY=pyrones or thiopyrones) complexes with different substitution pattern of the (thio)pyrone ligands have been synthesized, their structures characterized spectroscopically, and their aquation behavior investigated as well as their tumor‐inhibiting potency. The aquation behavior of pyrone systems with electron‐donating substituents and of thiopyrone complexes was found to be significantly different from that of the maltol‐type complex reported previously. However, the formation of the dimer can be excluded as the primary reason for the inactivity of the complex because some of the stable compounds are not active in cancer cell lines either. In contrast, studies of their reactivity towards amino acids demonstrate different reactivities of the pyrone and thiopyrone complexes, and the higher stability of the latter probably renders them active against human tumor cells.  相似文献   

2.
Benzoylthiourea derivatives feature several donor atoms capable of coordinating to metal centers. We report here a series of Ru(η6p‐cymene) complexes employing benzoylthiourea derivatives as ligands. Such ligands often coordinate to metal centers through their S and O donor atoms. We isolated complexes where the ligands were mono‐ or bidentately coordinated to Ru involving the S donor atom and surprisingly in bidentate coordination mode a deprotonated thiourea nitrogen resulting in a 4‐membered ring structure around the metal center. DFT calculations were used to explain the differences in coordination behavior. These were complemented by stability studies and biological investigations of the compounds as anticancer agents. Several of the synthesized derivatives exhibited significant cell growth inhibitory activity, with the complexes featuring bidentate ligands being more potent than their monodentate counterparts. This can be explained by the higher stability of the former under the conditions employed in cell culture assays.  相似文献   

3.
Reactions of pyrazole based ligand and halide bridged arene d6 metal precursors resulted a series of mono and di‐substituted pyrazole based half sandwich d6 metal complexes. In general, they are formulated as [(arene)MLCl2] [M = Ru, arene = benzene ( 1 ), p‐cymene ( 2 ), arene = Cp*, M = Rh ( 3 ) and Ir ( 4 )] and [(arene)ML2Cl] [M = Ru, arene = benzene ( 5 ), p‐cymene ( 6 ), arene = Cp*, M = Rh ( 7 ) and Ir ( 8 )]. All these complexes were characterized by various spectroscopic techniques (IR, 1H NMR, ESI‐MS, and UV/Vis). The molecular structures were confirmed by single‐crystal X‐ray diffraction technique. Spectroscopic studies revealed that complexation i.e., mono‐ and di‐substitution occurred by the ratio‐based reaction between pyrazole ligand and metal precursor through the neutral nitrogen rather than protic nitrogen. In these complexes deprotonation of the protic nitrogen does not occur unlike the other complexes containing pyrazole derivatives, in which the pyrazole ligand is anionic.  相似文献   

4.
The field of medicinal inorganic chemistry is rapidly advancing. In particular organometallic complexes have much potential as therapeutic and diagnostic agents. The carbon‐bound and other ligands allow the thermodynamic and kinetic reactivity of the metal ion to be controlled and also provide a scaffold for functionalization. The establishment of structure–activity relationships and elucidation of the speciation of complexes under conditions relevant to drug testing and formulation are crucial for the further development of promising medicinal applications of organometallic complexes. Specific examples involving the design of ruthenium and osmium arene complexes as anticancer agents are discussed.  相似文献   

5.
无机药物化学领域正在快速发展,尤其是有机金属配合物作为癌症的治疗和诊断试剂有很大的潜力.芳基钌配合物中芳基对抗癌活性有重要影响,并能调控配合物金属中心的热力学和动力学性能.配合物的构效关系研究,对进一步合理设计/合成具有潜在药用价值的有机金属配合物至关重要.本文选取钌芳基配合物作为抗癌药物的具体实例进行讨论,重点介绍了多种芳基钌配合物的构效关系及抗癌机理.  相似文献   

6.
The d6 metal complexes of thiourea derivatives were synthesized to investigate its cytotoxicity. Treatment of various N‐phenyl‐N´ pyridyl/pyrimidyl thiourea ligands with half‐sandwich d6 metal precursors yielded a series of cationic complexes. Reactions of ligand (L1‐L3) with [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) led to the formation of a series of cationic complexes bearing general formula [(arene)M(L1)к2(N,S)Cl]+, [(arene)M(L2)к2(N,S)Cl]+ and [(arene)M(L3)к2(N,S)Cl]+ [arene = p‐cymene, M = Ru ( 1 , 4 , 7 ); Cp*, M = Rh ( 2 , 5 , 8 ); Cp*, Ir ( 3 , 6 , 9 )]. These compounds were isolated as their chloride salts. X‐ray crystallographic studies of the complexes revealed the coordination of the ligands to the metal in a bidentate chelating N,S‐ manner. Further the cytotoxicity studies of the thiourea derivatives and its complexes evaluated against HCT‐116 (human colorectal cancer), MIA‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cancer cell lines showed that the thiourea ligands displayed no activity. Upon complexation however, the metal compounds possesses cytotoxicity and whilst potency is less than cisplatin, several complexes exhibited greater selectivity for HCT‐116 or MIA‐PaCa‐2 cells compared to ARPE‐19 cells than cisplatin in vitro. Rhodium complexes of thiourea derivatives were found to be more potent as compared to ruthenium and iridium complexes.  相似文献   

7.
Areneruthenium(II) molecular complexes of the formula [Ru(arene)(Q)Cl], containing diverse 4-acyl-5-pyrazolonate ligands Q with arene = cymene or benzene, have been synthesized by the interaction of HQ and [Ru(arene)Cl(micro-Cl)]2 dimers in methanol in the presence of sodium methoxide. The dinuclear compound [{Ru(cymene)Cl}2Q4Q] (H2Q4Q = bis(4-(1-phenyl-3-methyl-5-pyrazolone)dioxohexane), existing in the RRuSRu (meso form), has been prepared similarly. [Ru(cymene)(Q)Cl] reacts with sodium azide in acetone, affording [Ru(cymene)(Q)N3] derivatives, where Cl- has been replaced by N3-. The reactivity of [Ru(cymene)(Q)Cl] has also been explored toward monodentate donor ligands L (L = triphenylphosphine, 1-methylimidazole, or 1-methyl-2-mercaptoimidazole) and exo-bidentate ditopic donor ligands L-L (L-L = 4,4'-bipyridine or bis(diphenylphosphino)propane) in the presence of silver salts AgX (X = SO3CF3 or ClO4), new ionic mononuclear complexes of the formula [Ru(cymene)(Q)L]X, and ionic dinuclear complexes of the formula [{Ru(cymene)(Q)}2L-L]X2 being obtained. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. Their redox properties have been investigated by cyclic voltammetry and controlled potential electrolysis, which, on the basis of their measured RuII/III reversible oxidation potentials, have allowed the ordering of the bidentate acylpyrazolonate ligands according to their electron-donor character and are indicative of a small dependence of the HOMO energy upon the change of the monodentate ligand. This is accounted for by DFT calculations, which show a relevant contribution of acylpyrazolonate ligand orbitals to the HOMOs, whereas that from the monodentate ligand is minor.  相似文献   

8.
Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes ( Re1 and Re2 ), along with their corresponding dinuclear complexes ( Re3 and Re4 ), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1–Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase‐independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase‐independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes.  相似文献   

9.
The steric and electronic factors that influence which of the two rings of a substituted biphenyl ligand coordinates to chromium are of interest and it has been suggested that haptotropic rearrangements within these molecules may be limited if the arene–arene dihedral angle is too large. Two tricarbonylchromium(0) complexes and their respective free ligands have been characterized by single‐crystal X‐ray diffraction. In the solid state, tricarbonyl[(1′,2′,3′,4′,5′,6′‐η)‐2‐fluoro‐1,1′‐biphenyl]chromium(0), [Cr(C12H9F)(CO)3], (I), exists as the more stable isomer with the nonhalogenated arene ring ligated to the metal center. Similarly, tricarbonyl[(1′,2′,3′,4′,5′,6′‐η)‐4‐fluoro‐1,1′‐biphenyl]chromium(0) crystallizes as the more stable isomer with the phenyl ring bonded to the Cr0 center. The arene–arene dihedral angles in these complexes are 55.77 (4) and 52.4 (5)°, respectively. Structural features of these complexes are compared to those of the DFT‐optimized geometries of ten tricarbonyl[(η6‐C6H5)(4‐F‐C6H4)]chromium model complexes. The solid‐state structures of the free ligands 2‐fluoro‐1,1′‐biphenyl and 4‐fluoro‐1,1′‐biphenyl, both C12H9F, exhibit arene–arene dihedral angles of 54.83 (7) and 0.71 (8)°, respectively. The molecules of the free ligands occupy crystallographic twofold axes and exhibit positional disorder. Weak intermolecular C—H…F interactions are observed in all four structures.  相似文献   

10.
Half‐sandwiched ruthenium (II) arene complexes with piano stool‐like geometry with the general formula [(p‐cymene)RuClL1] and [(p‐cymene)RuClL2] [where L1 = (Z)‐N′‐((1,3‐diphenyl‐1H‐pyrazol‐4‐yl)methylene)furan‐2‐carbohydrazide and L2 = (Z)‐N′‐((1,3‐diphenyl‐1H‐pyrazol‐4‐yl)methylene)thiophene‐2‐carbohydrazide] were synthesized and characterized. The single crystal X‐ray data revealed that the complexes belong to the same crystal system (monoclinic) with octahedral geometry, where the ruthenium atom is surrounded by hydrazone ligand coordinated through ON atoms, one chloride labile co‐ligand and the remaining three coordination sites covered by an electron cloud of p‐cymene moiety. The interaction between the complexes and DNA/bovine serum albumin (BSA) was evaluated using absorption and emission titration methods showing intercalative modes of interaction. The DNA cleavage ability of the complexes was checked by agarose gel electrophoresis method exhibiting the destruction of DNA duplex arrangement. To understand the interaction between ruthenium complex and DNA/BSA molecule, molecular docking studies were performed. In vitro cytotoxicity of the complexes was examined by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay on human lung cancer cell line, A549, and found that at lower IC50, cell growth inhibition has occurred. Similarly, the IC50 values of the complexes treated with cancerous cell lines have produced a significant amount of lactase dehydrogenase and nitrite content in the culture medium, which were evaluated as apoptosis‐inducing factors, suggesting that the ruthenium (II) arene hydrazone complexes with pyrazole ligands have promising anticancer activities.  相似文献   

11.
Ruthenium(II)–arene complexes with biotin‐containing ligands were prepared so that a novel drug delivery system based on tumor‐specific vitamin‐receptor mediated endocytosis could be developed. The complexes were characterized by spectroscopic methods and their in vitro anticancer activity in cancer cell lines with various levels of major biotin receptor (COLO205, HCT116 and SW620 cells) was tested in comparison with the ligands. In all cases, coordination of ruthenium resulted in significantly enhanced cytotoxicity. The affinity of RuII–biotin complexes to avidin was investigated and was lower than that of unmodified biotin. Hill coefficients in the range 2.012–2.851 suggest strong positive cooperation between the complexes and avidin. To estimate the likelihood of binding to the biotin receptor/transporter, docking studies with avidin and streptavidin were conducted. These explain, to some extent, the in vitro anticancer activity results and support the conclusion that these novel half‐sandwich ruthenium(II)–biotin conjugates may act as biological vectors to cancer cells, although no clear relationship between the cellular Ru content, the cytotoxicity, and the presence of the biotin moiety was observed.  相似文献   

12.
Cationic and neutral silver(I)–L complexes (L=Buchwald‐type biaryl phosphanes) with nitrogen co‐ligands or organosulfonate counter ions have been synthesised and characterised through their structural and spectroscopic properties. At room temperature, both cationic and neutral silver(I)–L complexes are extremely active catalysts in the promotion of the single and double A3 coupling of terminal (di)alkynes, pyrrolidine and formaldehyde. In addition, the aza‐Diels–Alder two‐ and three‐component coupling reactions of Danishefsky’s diene with an imine or amine and aldehyde are efficiently catalysed by these cationic or neutral silver(I)–L complexes. The solvent influences the catalytic performance due to limited complex solubility or solvent decomposition and reactivity. The isolation of new silver(I)–L complexes with reagents as ligands lends support to mechanistic proposals for such catalytic processes. The activity, stability and metal–distal arene interaction of these silver(I)–L catalysts have been compared with those of analogous cationic gold(I) and copper(I) complexes.  相似文献   

13.
The catalytic hydration of benzonitrile and acetonitrile has been studied by employing different arene–ruthenium(II) complexes with phosphinous (PR2OH) and phosphorous acid (P(OR)2OH) ligands as catalysts. Marked differences in activity were found, depending on the nature of both the P‐donor and η6‐coordinated arene ligand. Faster transformations were always observed with the phosphinous acids. DFT computations unveiled the intriguing mechanism of acetonitrile hydration catalyzed by these arene–ruthenium(II) complexes. The process starts with attack on the nitrile carbon atom of the hydroxyl group of the P‐donor ligand instead of on a solvent water molecule, as previously suggested. The experimental results presented herein for acetonitrile and benzonitrile hydration catalyzed by different arene–ruthenium(II) complexes could be rationalized in terms of such a mechanism.  相似文献   

14.
A new series of monoselenoquinone and diselenoquinone π complexes, [(η6p‐cymene)Ru(η4‐C6R4SeE)] (R=H, E=Se ( 6 ); R=CH3, E=Se ( 7 ); R=H, E=O ( 8 )), as well as selenolate π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Se)][SbF6] (R=H ( 9 ); R=CH3 ( 10 )), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated‐arene and hydroxymonochlorinated‐arene ruthenium complexes [(η6p‐cymene)Ru(C6R4XCl)][SbF6]2 (R=H, X=Cl ( 1 ); R=CH3, X=Cl ( 2 ); R=H, X=OH ( 3 )) as well as the monochlorinated π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Cl)][SbF6]2 (R=H ( 4 ); R=CH3 ( 5 )). The X‐ray crystallographic structures of two of the compounds, [(η6p‐cymene)Ru(η4‐C6Me4Se2)] ( 7 ) and [(η6p‐cymene)Ru(η4‐C6H4SeO)] ( 8 ), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.  相似文献   

15.
The synthesis of bis(formazanate) zinc complexes is described. These complexes have well‐behaved redox‐chemistry, with the ligands functioning as a reversible electron reservoir. This allows the synthesis of bis(formazanate) zinc compounds in three redox states in which the formazanate ligands are reduced to “metallaverdazyl” radicals. The stability of these ligand‐based radicals is a result of the delocalization of the unpaired electron over four nitrogen atoms in the ligand backbone. The neutral, anionic, and dianionic compounds (L2Zn0/?1/?2) were fully characterized by single‐crystal X‐ray crystallography, spectroscopic methods, and DFT calculations. In these complexes, the structural features of the formazanate ligands are very similar to well‐known β‐diketiminates, but the nitrogen‐rich (NNCNN) backbone of formazanates opens the door to redox‐chemistry that is otherwise not easily accessible.  相似文献   

16.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

17.
The reaction of [(arene)RuCl(2)](2) (arene = cymene, 1,3,5-C(6)H(3)Me(3)) and [CpRhCl(2)](2) half-sandwich complexes with tridentate heterocyclic ligands in the presence of base has been investigated. In all cases, the chloro-ligands were substituted to give metallacyclic products with ring sizes between 4 and 18 atoms. The cyclization occurs in a highly diastereoselective fashion with chiral recognition between the different metal fragments. The complexes were comprehensively characterized by elemental analysis, NMR spectroscopy, and single crystal X-ray crystallography. For 2-hydroxy-nicotinic acid and 2-amino-nicotinic acid, dinuclear structures were obtained (15-17) whereas for 2,3-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, and 6-methyl-2,3-phenazinediol, trimeric assemblies were found (19-22), and for 4-imidazolecarboxylic acid, a tetrameric assembly (18) was found.  相似文献   

18.
A series of RuII–arene complexes ( 1 – 6 ) of the general formula [(η6‐arene)Ru(L)Cl]PF6 (arene=benzene or p‐cymene; L=bidentate β‐carboline derivative, an indole alkaloid with potential cyclin‐dependent kinases (CDKs) inhibitory activities) is reported. All the complexes were fully characterized by classical analytical methods, and three were characterized by X‐ray crystallography. Hydrolytic studies show that β‐carboline ligands play a vital role in their aqueous behaviour. These complexes are highly active in vitro, with the most active complex 6 displaying a 3‐ to 12‐fold higher anticancer activity than cisplatin against several cancer cell lines. Interestingly, the complexes are able to overcome cross‐resistance to cisplatin, and show much lower cytotoxicity against normal cells. Complexes 1 – 6 may directly target CDK1, because they can block cells in the G2M phase, down‐regulate the expression of CDK1 and cyclin B1, and inhibit CDK1/cyclin B in vitro. Further mechanism studies show that the complexes can effectively induce apoptosis through mitochondrial‐related pathways and intracellular reactive oxygen species (ROS) elevation.  相似文献   

19.
Tris{2‐[ N ‐(diethylaminothiocarbonyl)benz(‐amidino; imidoxy; ‐imidothio)‐ N ′‐yl]ethyl}amines – New Tripodal Ligands. Synthesis, Complex Stability, and Extraction Behaviour of their Silver(I) Complexes N‐(Thiocarbamoyl)‐benzimidoylchlorides react with trivalent nucleophiles to give four novel tripodal ligands. Two of them have been characterized by X‐ray methods. The ligands form with silver(I) cationic mononuclear complexes in which the three arms of the ligand are coordinated monodentately via sulfur. The results of FAB and ESI mass spectrometry as well as ESCA and NMR investigations verify this binding mode. The protonation constants of the ligands and the stability constants of silver(I) complexes have been determined potentiometrically. The novel tripodal compounds behave as powerful extractands for silver(I).  相似文献   

20.
The design of PtIV pro‐drugs as anticancer agents is predicated on the assumption that they will not undergo substitution reactions before entering the cancer cell. Attempts to improve the cytotoxic properties of PtIV pro‐drugs included the use of haloacetato axial ligands. Herein, we demonstrate that PtIV complexes with trifluoroacetato (TFA) or dichloroacetato (DCA) ligands can be unstable under biologically relevant conditions and readily undergo hydrolysis, which results in the loss of the axial TFA or DCA ligands. The half‐lives for PtIV complexes with two TFA or DCA ligands at pH 7 and 37 °C range from 6 to 800 min, which is short relative to the duration of cytotoxicity experiments that last 24–96 h. However, complexes with two monochloroacetato (MCA) or acetato axial ligands are stable under biologically relevant conditions. The loss of the axial ligands depends primarily on the electron‐withdrawing strength of the axial ligands, but also upon the nature of the equatorial ligands. We were unable to find obvious correlations between the structures of the PtIV complexes and the rates of decay of the parent compounds. The X‐ray crystal structures of the bis‐DCA and bis‐MCA PtIV derivatives of oxaliplatin did not reveal any significant structural differences that could explain the observed differences in stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号